Korean Journal of Sport Science

Search

Close

์ €์ฒด์˜จ์š”๋ฒ•์„ ์‚ฌ์šฉํ•œ ์‹ฌ์ •์ง€ ํ›„ ํ™˜์ž์—์„œ ์ •๋Ÿ‰๋‡ŒํŒŒ๋ถ„์„์„ ํ†ตํ•œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„์˜ˆ์ธก

Neurologic Prognostication by QEEG in Post Cardiac Arrest Patients with Therapeutic Hypothermia

Sue Hyun Lee, MDa, Hyung Seok Ahn, MDb, Yong Hwan Kim, MD, PhDc, Hyang Woon Lee, MD, PhDa, Jung Hwa Lee, MD, PhDa,d

์ €์ฒด์˜จ์š”๋ฒ•์„ ์‚ฌ์šฉํ•œ ์‹ฌ์ •์ง€ ํ›„ ํ™˜์ž์—์„œ ์ •๋Ÿ‰๋‡ŒํŒŒ๋ถ„์„์„ ํ†ตํ•œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„์˜ˆ์ธก

์ด์ˆ˜ํ˜„a, ์•ˆํ˜•์„b, ๊น€์šฉํ™˜c, ์ดํ–ฅ์šดa, ์ด์ •ํ™”a,d
Received March 6, 2020; ย  ย  ย  Revised July 15, 2020; ย  ย  ย  Accepted July 15, 2020;
ABSTRACT
Background
Post-cardiac arrest syndrome (PCAS) is one of the critical conditions which can result in a more serious brain injury. Early and accurate prognostication is crucial for deciding the patientโ€™s therapeutic plan and setting the treatment goal. This study aimed to establish the prognostication values of quantitative electroencephalography (QEEG) in PCAS patients.
Methods
We recruited 183 PCAS patients treated with therapeutic hypothermia. Electroencephalography (EEG) data within 72 hours after cardiac arrest (CA) and clinical data were collected. QEEG analysis including power spectral density (PSD) and connectivity analysis of default mode network (DMN) with imaginary coherence were performed.
Results
There were significantly different patterns of PSD between neurologic good and poor outcome groups; absolute and relative power of the alpha 2 and beta 1 frequency (10-15 Hz) bands were increased in all brain regions of good outcome group. However, the relative power of the delta band and higher frequency bands over fast alpha (beta 3 and gamma bands over 20 Hz) were poor outcome markers. We found out that connectivity of DMN were significantly decreased in the poor outcome group compared with the good outcome group.
Conclusions
These findings suggest that QEEG analysis could quantify and automate the interpretation of EEG. Furthermore, they can improve the prognostic values for neurologic outcomes relatively accurately and objectively in PCAS patients treated with hypothermia compared with traditional visual grading.
์„œ ๋ก 
์„œ ๋ก 
์‹ฌ์ •์ง€ํ›„์ฆํ›„๊ตฐ(post-cardiac arrest syndrome, PCAS)์€ ๋†’์€ ์‚ฌ๋ง๋ฅ ๊ณผ ์‹ฌ๊ฐํ•œ ๋‡Œ์†์ƒ์„ ์ดˆ๋ž˜ํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ ์งˆํ™˜์ด๋‹ค. ์กฐ๊ธฐ ์ œ์„ธ๋™ ๋ฐ ๋ชฉ๊ฒฉ์ž ์‹ฌํ์†Œ์ƒ์ˆ ์˜ ์ฆ๊ฐ€, ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ•(targeted temperature management, TTM) ๋“ฑ์˜ ์น˜๋ฃŒ์™€ ์กฐ๊ธฐ ๋Œ€์ฒ˜์˜ ๋ฐœ์ „์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์‹ฌ์ •์ง€ ํ›„ ํ™˜์ž์˜ ์ƒ์กด์œจ์€ ๋ฏธ๊ตญ์—์„œ 10.6%, ํ•œ๊ตญ์—์„œ 10.1%๋กœ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๊ณ , ์ด ์ค‘ ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๋ฅผ ๋ณด์ด๋Š” ๋น„์œจ์€ ๋ฏธ๊ตญ์—์„œ 8.3%, ํ•œ๊ตญ์—์„œ๋„ 6.1%์— ๋ถˆ๊ณผํ•˜๋‹ค[1]. ๋”ฐ๋ผ์„œ ๋Œ€๋ถ€๋ถ„์˜ ์‹ฌ์ •์ง€ ํ›„ ์ƒ์กด ํ™˜์ž๋Š” ์žฅ๊ธฐ๊ฐ„์˜ ์ง‘์ค‘์น˜๋ฃŒ์‹ค(intensive care unit, ICU)์— ์ž…์›ํ•˜๊ฒŒ ๋˜๋ฉฐ ์ด๋กœ ์ธํ•œ ๊ฒฝ์ œ์  ๋ถ€๋‹ด์„ ๊ฐ€์ง€๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ ๋‡Œํ—ˆํ˜ˆ๊ณผ ์žฌ๊ด€๋ฅ˜๋กœ ์ธํ•œ ๋‡Œ์†์ƒ์— ๋”ฐ๋ฅธ ์‹ฌ๊ฐํ•œ ์‹ ๊ฒฝ๊ณ„์žฅ์• ๋ฅผ ์ง€๋‹Œ ์ฑ„๋กœ ์‚ด์•„๊ฐ€๊ฒŒ ๋œ๋‹ค[2]. ๋ฐ˜๋Œ€๋กœ ์‹ฌ์ •์ง€ ํ›„ ํ™˜์ž์—์„œ ํšŒ๋ณต ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š” ํ™˜์ž๋ฅผ ๋‚˜์œ ์˜ˆํ›„๊ฐ€ ์˜ˆ์ธก๋œ๋‹ค๋Š” ์ด์œ ๋งŒ์œผ๋กœ ์—ฐ๋ช…์น˜๋ฃŒ์ค‘๋‹จ์„ ์ฆ‰๊ฐ์ ์œผ๋กœ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ ๋˜ํ•œ ์œค๋ฆฌ์  ๋ฌธ์ œ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ™˜์ž์—์„œ ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๋งŒ์ด ์•„๋‹ˆ๋ผ ์˜์‹ ํšŒ๋ณต์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•œ ์ผ์ด๋ฉฐ ์ด๋ฅผ ๋น ๋ฅด๊ณ  ๋ณด๋‹ค ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด ๋”์šฑ ์ข‹์„ ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ฌ์ •์ง€ ํ›„ ์ž๋ฐœ์ˆœํ™˜ํšŒ๋ณต(recovery of spontaneous circulation, ROSC)๋œ ํ™˜์ž์˜ ์ƒ์กด ์—ฌ๋ถ€์™€ ํ–ฅํ›„ ๊ธฐ๋Šฅ์  ์˜ˆํ›„๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ๋ณต์žกํ•˜๋ฉฐ, ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ• ์ ์šฉ๊ณผ ์ด๋กœ ์ธํ•œ ์ง‘์ค‘ ์น˜๋ฃŒ ์ค‘์˜ ์ง„์ •์ œ ์‚ฌ์šฉ์€ ์ด๋ฅผ ๋” ์–ด๋ ต๊ฒŒ ํ•œ๋‹ค[3].
์‹ฌ์ •์ง€ ํ›„ ํ™˜์ž์˜ ์˜ˆํ›„์— ์‚ฌ์šฉ๋˜๋Š” ํ‰๊ฐ€๋ฒ•์œผ๋กœ๋Š” ์‹ ๊ฒฝ๊ณ„์ง„์ฐฐ, ๋‡ŒํŒŒ๊ฒ€์‚ฌ(electroencephalography, EEG), ๋‡Œ ์ปดํ“จํ„ฐ๋‹จ์ธต์ดฌ์˜(computed tomography, CT), ๋‡Œ ์ž๊ธฐ๊ณต๋ช…์˜์ƒ(magnetic resonance imaging, MRI)๊ณผ ๊ฐ™์€ ๋‡Œ ์˜์ƒ๊ณผ ํ˜ˆ์•ก๊ฒ€์‚ฌ๊ฐ€ ์žˆ๋‹ค[4]. ๊ทธ๋Ÿฌ๋‚˜ ๊ฐ ๊ฒ€์‚ฌ๋Š” ์ผ์ • ์ด์ƒ์˜ ์œ„์–‘์„ฑ๋ฅ (false positive rate)์ด ์žˆ์œผ๋ฉฐ, ์ตœ์ ์˜ ๋ฏผ๊ฐ๋„(sensitivity)๋ฅผ ๋ณด์ด๋Š” ์ˆœ๊ฐ„์ด ๋‹ค๋ฅด๊ณ , ๊ธฐ๊ด€๋งˆ๋‹ค ๊ฐ€๋Šฅํ•œ ๊ฒ€์‚ฌ์˜ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค. ํŠนํžˆ, ์‹ฌ์ •์ง€ํ›„์ฆํ›„๊ตฐ ํ™˜์ž์˜ ์ž„์ƒ์  ๋‡ŒํŒŒ๋ถ„์„์—์„œ ๋‡Œ์ „์ฆ๋ชจ์–‘๋ฐฉ์ „(epileptiform discharge)์ด๋‚˜ ๋ฐฐ๊ฒฝํŒŒ์–ต์ œ(background suppression) ๊ฐ™์€ ์•…์„ฑ ๋‡ŒํŒŒ ํŒจํ„ด(malignant EEG pattern)์„ ํ™•์ธํ•˜๊ฒŒ ๋˜๋Š”๋ฐ ์ฃผ๋กœ ์œก์•ˆ ํŒ๋…์— ์˜์กดํ•˜๊ฒŒ ๋œ๋‹ค[5]. ๊ทธ๋Ÿฌ๋‚˜ ์ด ๋ฐฉ๋ฒ•์€ ์‹œ๊ฐ„๋„ ๋งŽ์ด ๊ฑธ๋ฆฌ๊ณ , ํŒ๋…๋Šฅ๋ ฅ์„ ๋ฐฐ์–‘ํ•˜๊ธฐ ์œ„ํ•ด ์žฅ๊ธฐ์ ์ธ ๊ต์œก์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ๋˜ํ•œ ๋‡ŒํŒŒ์˜ ์œก์•ˆ ์ค‘์ฆ๋„ ๊ตฌ๋ถ„์€ ์•„์ง๊นŒ์ง€ ๋‹ค์–‘ํ•œ ๋‡ŒํŒŒ์˜ ์–‘์ƒ์„ ํ•ด์„ํ•˜๊ณ  ์™ธ๋ถ€ ์ž๊ทน์— ๋Œ€ํ•œ ๋‡ŒํŒŒ์˜ ๋ฐ˜์‘์„ฑ์˜ ์†Œ์‹ค ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•˜๋Š” ๋ณดํŽธ์ ์ด๊ณ  ๊ฐ๊ด€์ ์ธ ๋ถ„๋ฅ˜์ง€์นจ์ด ์—†๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. 2010๋…„ ์ดํ›„ ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ์‹ฌ์ •์ง€ ํ›„ ํ™˜์ž์˜ ์น˜๋ฃŒ์—์„œ ๋ชฉํ‘œ์ฒด์˜จ์„ 32-34โ„ƒ๋กœ ์กฐ์ ˆํ•˜๋Š” ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ•์€ ํ‘œ์ค€์น˜๋ฃŒ์ง€์นจ์œผ๋กœ ๋„๋ฆฌ ์‹œํ–‰๋˜๊ณ  ์žˆ๋‹ค[6]. ์ด๋Ÿฌํ•œ ์น˜๋ฃŒ๋ฅผ ์œ„ํ•œ ๋งˆ์ทจ์ œ๋ฅผ ์ด์šฉํ•œ ์ง„์ • ๋ฐ ๊ธฐ๊ณ„์  ์ธ๊ณตํ˜ธํก๊ธฐ, ์ „์ž๊ธฐ๊ธฐ, ๊ทผ์œก ๋–จ๋ฆผ์œผ๋กœ ์ธํ•œ ์žก์Œ์€ ๋‡ŒํŒŒ ํ•ด์„์— ๋งŽ์€ ์˜ํ–ฅ์„ ๋ฏธ์ณ ๊ทธ ์œ ์šฉ์„ฑ์„ ์ €ํ•˜์‹œํ‚จ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋•Œ๋•Œ๋กœ ์•…์„ฑ ๋‡ŒํŒŒ ํŒจํ„ด์˜ ๋†’์€ ์œ„์–‘์„ฑ๋น„์œจ๋กœ ์ธํ•ด ์˜ˆํ›„ ๊ฒฐ์ • ํ˜น์€ ์น˜๋ฃŒ ๊ฒฐ์ •์— ์–ด๋ ค์›€์ด ๋”ฐ๋ฅธ๋‹ค. ์‹ค์ œ ์ž„์ƒํ™˜๊ฒฝ์—์„œ๋Š” ๋” ์ •ํ™•ํ•œ ์˜ˆํ›„์ง€ํ‘œ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.
์ตœ๊ทผ ์—”ํŠธ๋กœํ”ผ(entropy) ๊ธฐ๋ฐ˜ ๋ถ„์„, ๋Œ๋ฐœํŒŒ์–ต์ œ(burst suppression) ์ธก์ •, ์ •๋ณด์ง€์ˆ˜(information quantity) ์ธก์ • ๋ฐ ์ด์ค‘๋ถ„๊ด‘์ง€์ˆ˜(bispectral index, BIS)์™€ ๊ฐ™์€ ๊ฒฐํ•ฉ ์ธก์ •์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋งŽ์€ ์ •๋Ÿ‰์  ๋‡ŒํŒŒ์—ฐ๊ตฌ๊ฐ€ ๋™๋ฌผ ์‹ฌ์ •์ง€ ๋ชจ๋ธ๊ณผ ๋ช‡๋ช‡์˜ ์ž„์ƒ์—ฐ๊ตฌ๋“ค์—์„œ ์‹œํ–‰๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งค์šฐ ๋‚ฎ์€ ๋ฏผ๊ฐ๋„๋กœ ์ธํ•ด ์ž„์ƒ์ ์œผ๋กœ ์ˆ˜์šฉ์ด ๋ถˆ๊ฐ€ํ•˜๋ฉฐ ํƒ€ ๊ธฐ๊ด€์—์„œ ์‹คํ˜„ ๋ถˆ๊ฐ€ํ•˜๊ฑฐ๋‚˜ ๊ฒ€์ฆ๋˜์ง€ ์•Š์•„ ์ •๋Ÿ‰์  ๋‡ŒํŒŒ์—๋Š” ์ตœ์ ์˜ ํ‘œ์ค€์ง€ํ‘œ๊ฐ€ ์—†๋‹ค[7]. ๋”ฐ๋ผ์„œ ๋ชฉํ‘œ์ฒด์˜จ ์น˜๋ฃŒ๋กœ ์ธํ•ด ๋ฐœ์ƒ๋˜๋Š” ๋‡ŒํŒŒ์˜ ์œ ์šฉ์„ฑ์˜ ์ €ํ•˜๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ์œก์•ˆ ํŒ๋…์˜ ํ•œ๊ณ„์ ๋“ค์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋ณด๋‹ค ๊ฐ๊ด€์ ์ด๋ฉฐ ์•ฝ๋ฌผ ์ง„์ • ๋ฐ ๊ทผ์ด์™„์ œ ๋“ฑ์˜ ์˜ํ–ฅ์„ ๋น„๊ต์  ๋œ ๋ฐ›๋Š” ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ์ง€ํ‘œ๋ฅผ ๋ฐœ๊ตดํ•˜์—ฌ ๊ทธ ์‹ค์ œ์  ์œ ์šฉ์„ฑ์„ ํ™•์ธํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค.
๋‚ด์ •์ƒํƒœํšŒ๋กœ(default mode network, DMN)๋Š” ๋‡Œ์˜ ๊ธฐ์ € ์ƒํƒœ๋ฅผ ํŠน์ •์ง“๋Š” ๋‡Œ์˜ ์ฃผ๋œ ๋„คํŠธ์›Œํฌ๋กœ ์ œํ•œ๋ฐ›์ง€ ์•Š๋Š” ์ž๋ฐœ์  ์ธ์ง€ ๋˜๋Š” ์ž๊ทน๊ณผ ๋ฌด๊ด€ํ•œ ์ƒ๊ฐ๋“ค๊ณผ ๊ด€๋ จ์ด ์žˆ๋‹ค๊ณ  ์—ฌ๊ฒจ์ง„๋‹ค[8]. ์ฃผ๋กœ ํœด์‹๊ธฐ์˜ ๊นจ์–ด์žˆ๋Š” ์ƒํƒœ์™€ ๊ด€๋ จ ์žˆ๋Š” network๋‚˜ ์ตœ๊ทผ์— ์ฝ”๋งˆ ํ™˜์ž์˜ ํšŒ๋ณต๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ ํŠน์„ฑ์œผ๋กœ DMN์˜ ์—ญํ• ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค[9]. ์‹๋ฌผ์ธ๊ฐ„ ์ƒํƒœ, ๋‡Œ์‚ฌ, ์™ธ์ƒ์œผ๋กœ ์ธํ•œ ๋‡Œ์†์ƒ์œผ๋กœ ์ธํ•œ ์˜์‹์ €ํ•˜ ํ™˜์ž๋“ค์˜ ์—ฌ๋Ÿฌ ๊ธฐ๋Šฅ์ž๊ธฐ๊ณต๋ช…์˜์ƒ(functional MRI, fMRI) ์—ฐ๊ตฌ์—์„œ DMN์˜ ์—ฐ๊ฒฐ์„ฑ์ด ์‹ฌ๊ฐํ•˜๊ฒŒ ์ €ํ•˜๋˜์—ˆ๋‹ค๊ณ  ๋ณด๊ณ ๋˜์—ˆ๋‹ค[10-15]. ๋˜ํ•œ ์˜์‹์ด ํ˜ธ์ „๋˜๋Š” ํ™˜์ž์—์„œ ์˜์‹์ด ํ˜ธ์ „๋˜์ง€ ๋ชปํ•˜๋Š” ํ™˜์ž์— ๋น„ํ•˜์—ฌ DMN์˜ ์—ฐ๊ฒฐ์„ฑ์ด ๋” ์ž˜ ๋ณด์กด๋˜์–ด ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ฌ์ •์ง€ ํ›„ ์˜์‹์ €ํ•˜๋ฅผ ๋ณด์ด๋Š” ํ™˜์ž์—์„œ 72์‹œ๊ฐ„ ๋‚ด์— ์‹œํ–‰ํ•˜๊ฒŒ ๋˜๋Š” ๋‡ŒํŒŒ๊ฒ€์‚ฌ์˜ ์ •๋Ÿ‰์  ๋ถ„์„์„ ํ†ตํ•œ DMN์˜ ์—ฐ๊ฒฐ์„ฑ ๋ณ€ํ™”๋ฅผ ํ™•์ธํ•˜์—ฌ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„์™€์˜ ๊ด€๋ จ์„ฑ์„ ํ™•์ธํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค.
์ด ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์ž๋ฐœ์ˆœํ™˜ํšŒ๋ณต ํ›„ 72์‹œ๊ฐ„ ์ด๋‚ด์˜ ๋‡ŒํŒŒ๋ฅผ ์ด์šฉํ•œ ํŒŒ์›Œ์ŠคํŽ™ํŠธ๋Ÿผ๋ฐ€๋„(PSD)๋ถ„์„ ๋ฐ ๋‚ด์ •์ƒํƒœํšŒ๋กœ(DMN)์˜ ์—ฐ๊ฒฐ์„ฑ ๋ถ„์„์ด ์ดˆ๊ธฐ ์ •๋Ÿ‰์  ๋‡ŒํŒŒ๋ถ„์„์ง€ํ‘œ๋กœ์„œ ์‹ฌ์ •์ง€ํ›„์ฆํ›„๊ตฐ ํ™˜์ž์˜ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„์˜ˆ์ธก์— ๋„์›€์ด ๋˜๋Š”์ง€ ํ™•์ธํ•˜๊ณ ์ž ํ•˜๋Š” ๋ฐ ์žˆ๋‹ค.
๋Œ€์ƒ๊ณผ ๋ฐฉ๋ฒ•
๋Œ€์ƒ๊ณผ ๋ฐฉ๋ฒ•
1. ์—ฐ๊ตฌ ์„ค๊ณ„
1. ์—ฐ๊ตฌ ์„ค๊ณ„
์ด ์—ฐ๊ตฌ๋Š” ์‹ฌ์ •์ง€ ํ›„ ํ™˜์ž ๋ ˆ์ง€์ŠคํŠธ๋ฆฌ(registry)์™€ ์ž๋ฐœ์ˆœํ™˜ํšŒ๋ณต ํ›„ 72์‹œ๊ฐ„๋‚ด ์‹œํ–‰ํ•œ ๋‡ŒํŒŒ๋ฅผ ์‚ฌ์šฉํ•œ ํ›„ํ–ฅ์  ์—ฐ๊ตฌ์ด๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์„ฑ๊ท ๊ด€๋Œ€ํ•™๊ต ์˜๊ณผ๋Œ€ํ•™ ๋ถ€์† ์‚ผ์„ฑ์ฐฝ์›๋ณ‘์›์˜ ์ž„์ƒ์‹œํ—˜ ์‹ฌ์‚ฌ์œ„์›ํšŒ์˜ ์Šน์ธ์„ ๋ฐ›์•˜๋‹ค(IRB No: 2017-04-002-002). ์ด ์—ฐ๊ตฌ๋Š” ์‹ฌ์ •์ง€ ํ›„ ํ™˜์ž ๋ ˆ์ง€์ŠคํŠธ๋ฆฌ์™€ ํ†ต๊ณ„ ๋ฐ ์ž„์ƒ ํŠน์ง•์„ ํฌํ•จํ•œ ์ „์ž์˜๋ฌด๊ธฐ๋ก(electronic medical records, EMR)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค.
2. ์—ฐ๊ตฌ ๋Œ€์ƒ
2. ์—ฐ๊ตฌ ๋Œ€์ƒ
2012๋…„ 3์›”๋ถ€ํ„ฐ 2019๋…„ 2์›”๊นŒ์ง€ ์‚ผ์„ฑ์ฐฝ์›๋ณ‘์›์— ๋‚ด์›ํ•œ ์‹ฌ์ •์ง€ ํ›„ ํ™˜์ž๋กœ ๋“ฑ๋ก๋œ ํ™˜์ž๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ํ•˜์˜€๋‹ค. ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ•์„ ๋ฐ›์€ 18์„ธ ์ด์ƒ์˜ ๋ชจ๋“  ์‹ฌ์ •์ง€ํ›„์ฆํ›„๊ตฐ ํ™˜์ž์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ๋‹ค๋งŒ ํ™˜์ž ์ค‘ 1) ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ•์„ ๋ฐ›์ง€ ์•Š์€ ํ™˜์ž, 2) ์ž๋ฐœ์ˆœํ™˜ ํšŒ๋ณต ํ›„ 72์‹œ๊ฐ„๋‚ด ๋‡ŒํŒŒ๋ฅผ ์‹œํ–‰ํ•˜์ง€ ์•Š์€ ํ™˜์ž, 3) ๊ฐœ์ธ์ •๋ณด๋ณดํ˜ธ ๋“ฑ์„ ์ด์œ ๋กœ EMR ์ž๋ฃŒ ์ˆ˜์ง‘์ด ๋ถˆ๊ฐ€๋Šฅํ•œ ํ™˜์ž, 4) ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ฐ€ ๋ก๋˜์ง€ ์•Š์€ ํ™˜์ž, 5) ๋‡ŒํŒŒ๊ฐ€ ํŒ๋…์ด ์–ด๋ ค์šธ ์ •๋„๋กœ ์žกํŒŒ๊ฐ€ ๋งŽ์€ ํ™˜์ž๋Š” ์ œ์™ธํ•˜์˜€๋‹ค.
3. ํ™˜์ž์˜ ์น˜๋ฃŒ
3. ํ™˜์ž์˜ ์น˜๋ฃŒ
๋ชจ๋“  ํ™˜์ž๋Š” ์‹ฌ์ •์ง€ํ›„์ฆํ›„๊ตฐ์˜ ํ‘œ์ค€ ์น˜๋ฃŒ๋ฒ•์— ๋”ฐ๋ผ ์น˜๋ฃŒ๋˜์—ˆ๋‹ค. ํ˜„์žฌ ๋ณดํŽธ์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ฏธ๊ตญ์‹ฌ์žฅํ˜‘ํšŒ(American Heart Association, AHA) ๊ฐ€์ด๋“œ๋ผ์ธ์— ๋”ฐ๋ผ ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ•์„ ์‹œํ–‰ํ•˜์˜€๋‹ค. ๋ชฉํ‘œ์ฒด์˜จ์ธ 34โ„ƒ์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•ด ํ•˜์ด๋“œ๋กœ๊ฒ” ํŒจ๋“œ(ArcticSun; Medivance Corp., Louisville, CO, USA)๋‚˜ ๋ƒ‰๊ฐ ๋งคํŠธ๋ฆฌ์Šค(Medi-Therm, Gaymar; Gaymar Industries Inc., Orchard Park, NY, USA), 4โ„ƒ ๋ƒ‰๊ฐ ์‹์—ผ์ˆ˜๋ฅผ ํ†ตํ•œ ๋ฐฉ๊ด‘์„ธ์ฒ™์˜ ํ†ต์ƒ์  ๋ณด์กฐ์  ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฒด์˜จ ํ•˜๊ฐ•์„ ์œ ๋„ํ•˜์˜€๋‹ค. ๋ชฉํ‘œ์ฒด์˜จ์— ๋„๋‹ฌ ํ›„ 24์‹œ๊ฐ„ ๋™์•ˆ 33-35โ„ƒ ๋ฒ”์œ„๋กœ ์ฒด์˜จ์„ ์œ ์ง€ํ•˜๊ณ , ์œ ์ง€ ๊ธฐ๊ฐ„ ์ดํ›„์—๋Š” ์‹œ๊ฐ„๋‹น 0.15โ„ƒ๋กœ 36.5โ„ƒ๋กœ ์œ ์ง€ํ•˜์˜€๋‹ค. ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ•์„ ์‹ค์‹œํ•˜๋Š” ๋™์•ˆ ์ง„์ •๊ณผ ๋–จ๋ฆผ์˜ ๋ฐฉ์ง€๋ฅผ ์œ„ํ•ด ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ• ์‹œ์ž‘๊ณผ ๋™์‹œ์— ์ง€์†์  ๋ ˆ๋ฏธํŽœํƒ€๋‹(remifentanil) ์ •๋งฅ ์ฃผ์ž…(0.1-0.2 mcg/kg/min), ์ง€์†์  ๋ฏธ๋‹ค์กธ๋žŒ(midazolam) ์ •๋งฅ ์ฃผ์ž…(0.04-0.2 mg/kg/hr), ๊ฐ„ํ—์  ์‹œ์Šค์•„ํŠธ๋ผ์ฟ ๋ฅจ(cisatracurium) ์ •๋งฅ ํˆฌ์—ฌ(0.5-3 mcg/kg/min)๋ฅผ ์ด์šฉํ•˜์˜€๋‹ค. ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ• ์‹œํ–‰ 24์‹œ๊ฐ„ ๋’ค๋ถ€ํ„ฐ ์ฒœ์ฒœํžˆ ์˜จ๋„๋ฅผ ์ฆ๋Ÿ‰ํ•˜์—ฌ ์ •์ƒ์ฒด์˜จ์— ๋„๋‹ฌ์‹œํ‚ค๋Š”๋ฐ ์ด ๋•Œ remifentanil, midazolam, cisatracurium๋„ ์ ์ฐจ ๊ฐ๋Ÿ‰ํ•˜์˜€๊ณ  ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ•์ด ๋๋‚˜๋Š” 48-72์‹œ๊ฐ„ ๋‚ด์— ์ง„์ •์•ฝ๋ฌผ์€ ์ค‘๋‹จํ•˜๊ฒŒ ๋œ๋‹ค. ์ค‘์‹ฌ์ฒด์˜จ์€ ์‹๋„ ์†Œ์‹์ž๋ฅผ ์ด์šฉํ•˜์—ฌ ์ง€์†์ ์œผ๋กœ ๊ฐ์‹œํ•˜์˜€๋‹ค. ์ž„์ƒ์ ์ธ ๊ฒฝ๋ จ์ด๋‚˜ ๊ฐ„๋Œ€์„ฑ ๊ทผ๊ฒฝ๋ จ์ด ์žˆ๋Š” ํ™˜์ž์—์„œ๋Š” ๋‡ŒํŒŒ ์ƒ ๋‡Œ์ „์ฆ๋ชจ์–‘๋ฐฉ์ „ ์—ฌ๋ถ€์— ๊ด€๊ณ„์—†์ด ๋ ˆ๋น„ํ‹ฐ๋ผ์„ธํƒ(levetiracetam), ๋ฐœํ”„๋กœ์‚ฐ(valproic acid) ๋“ฑ ์ฃผ์‚ฌ์ œ์ œ๊ฐ€ ์žˆ๋Š” ํ•ญ๊ฒฝ๋ จ์ œ๋ฅผ ์ •๋งฅ ์ฃผ์‚ฌํ•˜์—ฌ ์น˜๋ฃŒํ•˜์˜€๋‹ค.
4. ์ž„์ƒ๋ฐ์ดํ„ฐ์˜ ์ˆ˜์ง‘ ๋ฐ ์˜ˆํ›„ ํ‰๊ฐ€
4. ์ž„์ƒ๋ฐ์ดํ„ฐ์˜ ์ˆ˜์ง‘ ๋ฐ ์˜ˆํ›„ ํ‰๊ฐ€
๋‹ค์Œ ๋ฐ์ดํ„ฐ๋“ค์€ ํ›„ํ–ฅ์ ์œผ๋กœ ๊ฒ€ํ† ๋˜์—ˆ๋‹ค: ํ™˜์ž ์—ฐ๋ น, ์„ฑ๋ณ„, ์“ฐ๋Ÿฌ์งˆ ๋‹น์‹œ์˜ ๋ชฉ๊ฒฉ์ž ์กด์žฌ ์œ ๋ฌด, ์ฒซ ์‹ฌ์ „๋„(electrocardiogram, ECG) ๊ฒฐ๊ณผ, ์‹ฌ์ •์ง€์˜ ์›์ธ, ์‹ฌ์ •์ง€์˜ ์œ„์น˜, ๋ณ‘์›๋‚ด ์‹ฌํ์†Œ์ƒ์ˆ ์‹œ๊ฐ„, ๊ธ€๋ž˜์Šค๊ณ ํ˜ผ์ˆ˜์ฒ™๋„(Glasgow coma scale, GCS), ์ˆœํ™˜์ •์ง€์‹œ๊ฐ„, ์ž๋ฐœ์ˆœํ™˜ ํšŒ๋ณต์—์„œ ๋‡ŒํŒŒ ๋ฐ ๋‡Œ CT๊นŒ์ง€ ๊ฑธ๋ฆฐ ์‹œ๊ฐ„, ๊ธฐ๋ก๋œ ๊ฐ ํ™˜์ž์˜ ์‹ฌ์ •์ง€ ์›์ธ์ด Utstein๋ฒ•์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค. ํ‡ด์›์‹œ ๊ธ€๋ž˜์Šค๊ณ  ํ”ผ์ธ ๋ฒ„๊ทธ Cerebral Performance Category (CPC) ์ ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€์œผ๋ฉฐ ์ด๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค: 1(ํšŒ๋ณต), 2(์ค‘๋“ฑ๋„์žฅ์• ), 3(์‹ฌํ•œ ์žฅ์• ), 4(์‹๋ฌผ์ธ๊ฐ„ ์ƒํƒœ), 5(๋‡Œ์‚ฌ) [16]. ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๋Š” ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„(CPC 1,2)์™€ ๋‚˜์œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„(CPC 3-5)๋กœ ์ด๋ถ„ํ™”ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ชจ๋“  ๋‡ŒํŒŒ ๊ธฐ๋ก์€ 2๋ช…์˜ ์ธ์ฆ๋œ ์‹ ๊ฒฝ๊ณผ ์ „๋ฌธ์˜์— ์˜ํ•ด ์•…์„ฑ ๋‡ŒํŒŒ ํŒจํ„ด์ด ํŒ๋…๋˜์—ˆ๋‹ค. ์•…์„ฑ ๋‡ŒํŒŒ ํŒจํ„ด์ด๋ž€ ๋‚˜์œ ์˜ˆํ›„๋ฅผ ๋ณด์ผ ๊ฒƒ์œผ๋กœ ์ถ”์ธก๋˜๋Š” ๋‡ŒํŒŒ๋กœ ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐฐ๊ฒฝํŒŒ์–ต์ œ(background suppression)๋‚˜ ๋Œ๋ฐœํŒŒ์–ต์ œ(burst suppression), ๋‡Œ์ „์ฆ๋ชจ์–‘๋ฐฉ์ „(epileptiform discharge), ์•ŒํŒŒ์ฝ”๋งˆ(alpha coma) ๋˜๋Š” ์„ธํƒ€์ฝ”๋งˆ(theta coma), ์ฃผ๊ธฐ๋ฐฉ์ „(periodic discharge)์œผ๋กœ ์ •์˜ํ•˜์˜€๋‹ค.
5. ์ •๋Ÿ‰์  ๋‡ŒํŒŒ๋ถ„์„
5. ์ •๋Ÿ‰์  ๋‡ŒํŒŒ๋ถ„์„

1) ๋‡ŒํŒŒ์˜ ํš๋“ ๋ฐ ์ „์ฒ˜๋ฆฌ

1) ๋‡ŒํŒŒ์˜ ํš๋“ ๋ฐ ์ „์ฒ˜๋ฆฌ

์‹ฌ์ •์ง€ ํ›„ 72์‹œ๊ฐ„ ์ด๋‚ด ๋‡ŒํŒŒ ์ค‘ ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๊ตฌ๊ฐ„(5๋ถ„)์„ ๋ˆˆ์„ ๊ฐ์€ ํœด์‹(resting) ์ƒํƒœ์˜ ๋‡ŒํŒŒ๋ฅผ ๋ถ„์„์— ํฌํ•จ์‹œ์ผฐ์œผ๋ฉฐ ์ฐธ์กฐ ๋ชฝํƒ€์ฃผ(reference montage)์™€ ๋‹ค์Œ 19์ฑ„๋„์„ ๋ฐ์ดํ„ฐ๋ถ„์„์— ์‚ฌ์šฉํ•˜์˜€๋‹ค: FP1, FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2. ์ฐธ์กฐ ์ „๊ทน(reference electrode)์œผ๋กœ๋Š” ๊ณตํ†ต ํ‰๊ท  ์ฐธ์กฐ ์ „๊ทน(common average reference)์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋‡ŒํŒŒ ๋ฐ์ดํ„ฐ๋Š” 250 Hz์˜ ํ‘œ๋ณธ์ถ”์ถœ๋น„์œจ(sampling rate)๋กœ ์ €์žฅํ•˜์˜€์œผ๋ฉฐ, ๊ณ ์ฃผํŒŒ์ˆ˜ํ†ต๊ณผํ•„ํ„ฐ(high-pass filter)๋Š” 1 Hz๋กœ, ์ €์ฃผํŒŒ์ˆ˜ํ†ต๊ณผํ•„ํ„ฐ(low-pass filter)๋Š” 45 Hz๋กœ ์„ค์ •ํ•˜์—ฌ ํ‰๊ท  ๊ธฐ์ค€์œผ๋กœ ์žฌ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋‡ŒํŒŒ ์žกํŒŒ๋Š” ์œก์•ˆ๊ฒ€์‚ฌ ๋ฐ advanced mixture independent component analysis (ICA)๋ฅผ ํ†ตํ•ด ์ œ๊ฑฐํ•˜์˜€๋‹ค[17]. ์žกํŒŒ๊ฐ€ ์ œ๊ฑฐ๋œ ๋‡ŒํŒŒ์—์„œ EEGLAB [18]์„ ๊ธฐ๋ฐ˜์œผ๋กœ spectopo ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•œ ์„ผ์„œ ๋ ˆ๋ฒจ์˜ ๋ถ„์„์€ ๋‹ค์Œ 8๊ฐœ์˜ ์ŠคํŽ™ํŠธ๋Ÿผ์œผ๋กœ ๋‚˜๋ˆ„์—ˆ๋‹ค. ๋ธํƒ€(1-3.99 Hz), ์„ธํƒ€(4-7.99 Hz), ์•ŒํŒŒ1 (8-9.99 Hz), ์•ŒํŒŒ2 (10-11.99 Hz), ๋ฒ ํƒ€1 (12-14.99 Hz), ๋ฒ ํƒ€2 (15-19.99 Hz), ๋ฒ ํƒ€3 (20-29.99 Hz) ๋ฐ ๊ฐ๋งˆ(30-44.99 Hz). 8-12 Hz์˜ ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฐ€์ง€๋Š” ์•ŒํŒŒ๋Š” ์ •์ƒ์ธ์˜ ๊ฒฝ์šฐ ํœด์‹๊ธฐ์˜ ๊นจ์–ด ์žˆ๋Š” ์ƒํƒœ์—์„œ ๊ด€์ฐฐ๋˜๋ฉฐ 12-30 Hz์˜ ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฐ€์ง€๋Š” ๋ฒ ํƒ€๋Š” ๊ธด์žฅ๊ธฐ์˜ ๊นจ์–ด ์žˆ๋Š” ์ƒํƒœ์—์„œ ๋ฐœ๊ฒฌ๋˜๋ฏ€๋กœ ํ™˜์ž์˜ ์˜์‹ ์ˆ˜์ค€๊ณผ ์—ฐ๊ด€์ด ์žˆ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์•ŒํŒŒ์™€ ๋ฒ ํƒ€๋ฅผ ์ข€ ๋” ์„ธ๋ถ„ํ™”ํ•˜์—ฌ ์˜์‹๊ณผ ์ธ์ง€๊ธฐ๋Šฅ ๊ด€๋ จ ์—ฐ๊ด€์„ฑ์ด ๋งŽ์€ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ๋Œ€๋ฅผ ์„ธ๋ถ„ํ™”ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ ˆ๋Œ€์  ๋ฐด๋“œ(absolute band) ํŒŒ์›Œ๋Š” 1์ดˆ์˜ ๊ฒน์น˜๋Š” ์ฐฝ(window)์„ ๊ฐ€์ง„ ๊ฐ๊ฐ์˜ 2์ดˆ์˜ ๋‡ŒํŒŒ ๋ฐ์ดํ„ฐ์— ์ด์‚ฐ ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜์— ์˜ํ•ด ๊ณ„์‚ฐ๋˜๊ณ , ๋กœ๊ทธ(log) ์Šค์ผ€์ผ๋กœ ํ‘œํ˜„๋˜์—ˆ๋‹ค. ์ƒ๋Œ€์  ๋ฐด๋“œ(relative band) ํŒŒ์›Œ๋Š” ๋ชจ๋“  ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์— ๊ฑธ์นœ ์ด ์ „๋ ฅ์—์„œ ํŠน์ • ์ฃผํŒŒ์ˆ˜ ์ „๋ ฅ์˜ ๋ถ„์œจ๋กœ ๊ณ„์‚ฐ๋˜์—ˆ๋‹ค.

2) ๋‚ด์ •์ƒํƒœํšŒ๋กœ์˜ ์—ฐ๊ฒฐ์„ฑ ๋ถ„์„

2) ๋‚ด์ •์ƒํƒœํšŒ๋กœ์˜ ์—ฐ๊ฒฐ์„ฑ ๋ถ„์„

์†Œ์Šค(source) ์žฌ๊ตฌ์„ฑ์€ Desikan & Kiliany atlas [19]์— ๊ธฐ๋ฐ˜ํ•œ 68 region of interest (ROI)์™€ Colin 27 head model [20]์„ ์‚ฌ์šฉํ•˜๋Š” standardized Low Resolution Electromagnetic Topography (sLORETA) plugin [21]์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹œํ–‰๋˜์—ˆ๋‹ค. ํ—ˆ์ˆ˜๋ถ€ ์ผ๊ด€์„ฑ(imaginary coherence, iCoh)์€ ํŠน์ • ROI ์‚ฌ์ด์˜ ๋‡Œ์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์—ฐ๊ตฌํ•˜๋Š”๋ฐ ๋ณผ๋ฅจ์ „๋„(volume conduction)์˜ ์˜ํ–ฅ์ด ๊ฐ€์žฅ ์ ์€ ์‹ ๋ขฐ์„ฑ์ด ๋†’์€ ํ›Œ๋ฅญํ•œ ์ฒ™๋„๋กœ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ธฐ๋Šฅ์  ์—ฐ๊ฒฐ์„ฑ์˜ ์ฒ™๋„๋กœ ๊ณ„์‚ฐ๋˜์—ˆ๋‹ค. iCoh๋Š” ์ผ๊ด€์„ฑ(coherence)์˜ ํ—ˆ์ˆ˜ ๋ถ€๋ถ„์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค[22].
iCoh = im(Coh(f)) = im((S_xy (f))/{(S_xx (f) S_yy (f))}1/2)
์—ฌ๊ธฐ์„œ Sxy(f)๋Š” ๊ต์ฐจ ํŒŒ์›Œ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ฐ€๋„์ด๊ณ , Sxx(f)์™€ Syy(f)๋Š” ๊ฐ ์ฑ„๋„์˜ X์™€ Y์— ๋Œ€ํ•œ ์ž๋™ ํŒŒ์›Œ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ฐ€๋„์ด๋‹ค.
Advanced mixture ICA, ์„ผ์„œ ๋ ˆ๋ฒจ ๊ธฐ๋Šฅ ์ถ”์ถœ ๋ฐ ์†Œ์Šค ๋ ˆ๋ฒจ ๊ธฐ๋Šฅ ์ถ”์ถœ์„ ์‚ฌ์šฉํ•œ ๋ชจ๋“  ์ „์ฒ˜๋ฆฌ๋‹จ๊ณ„๋Š” iSyncBrainยฎ (iMediSync, Seoul, Korea)์—์„œ ์‹œํ–‰๋˜์—ˆ๋‹ค.

3) ๋ฐ์ดํ„ฐ๋ถ„์„์„ ์œ„ํ•œ ํ†ต๊ณ„์  ๋ฐฉ๋ฒ•

3) ๋ฐ์ดํ„ฐ๋ถ„์„์„ ์œ„ํ•œ ํ†ต๊ณ„์  ๋ฐฉ๋ฒ•

์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ๊ณผ ๋‚˜์œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์˜ ๊ธฐ๋ณธ ์ž„์ƒ ํŠน์„ฑ ์ฐจ์ด ๋ถ„์„์—์„œ ์—ฐ์†ํ˜• ์ž๋ฃŒ(์—ฐ๋ น, ์ˆœํ™˜์ •์ง€์‹œ๊ฐ„, ์ˆœํ™˜๋ถˆ์ถฉ๋ถ„์‹œ๊ฐ„, GCS, ๋™๊ณต ํฌ๊ธฐ, neuron specific enolase)๋Š” ๋…๋ฆฝ์ ์ธ t test๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋น„๊ตํ•˜์˜€๋‹ค: ๋ฐ์ดํ„ฐ๋Š” ํ‰๊ท ยฑํ‘œ์ค€ํŽธ์ฐจ๋กœ ํ‘œํ˜„ํ•˜์˜€๋‹ค. ์นด์ด์ œ๊ณฑ ๋ฐ Fisherโ€™s exact test๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ •๋Ÿ‰์  ๋ฐ์ดํ„ฐ(์„ฑ๋ณ„, ์‹ฌ์ •์ง€์‹œ ๋ชฉ๊ฒฉ์ž ์‹ฌํ์†Œ์ƒ์ˆ  ์—ฌ๋ถ€, ์ œ์„ธ๋™๊ธฐ ์‚ฌ์šฉ ์—ฌ๋ถ€, ๋™๊ณต๋ฐ˜์‚ฌ ์—ฌ๋ถ€, ๊ฒฝ๋ จ ์—ฌ๋ถ€, ์‹ฌ์ •์ง€์˜ ์›์ธ, ๋‡ŒํŒŒ์˜ ์œก์•ˆ์  ๋ถ„์„ ๊ฒฐ๊ณผ)๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ํŒŒ์›Œ์ŠคํŒฉํŠธ๋Ÿผ๋ฐ€๋„(power spectral density, PSD)๋ถ„์„์—์„œ ๊ฐ ์ฃผํŒŒ์ˆ˜๋Œ€์—ญ์˜ ๋‡ŒํŒŒ์˜ ์ •๋Ÿ‰์  ๋ถ„์„ ๊ฒฐ๊ณผ์—์„œ ์ ˆ๋Œ€์  ํŒŒ์›Œ(absolute power)์™€ ์ƒ๋Œ€์  ํŒŒ์›Œ(relative power) ๋ฐ DMN ๋ถ„์„์—์„œ๋Š” ๋…๋ฆฝ์ ์ธ t test ๋ฐ ๋‹ค์ค‘๊ฒ€์ •๋น„๊ต์˜ ๋ฌธ์ œ(multiple comparison problem, MCP)๋ฅผ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌํ›„๋ถ„์„(post hoc)์„ false discovery rate (FDR)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๊ณ  corrected p 0.05์„ ์ ์šฉํ•˜์—ฌ ํ†ต๊ณ„์  ์œ ์˜์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. DMN ์‹œ๊ฐํ™”์—์„œ๋Š” corrected p 0.05 ์ดํ•˜์˜ ๊ฐ’๋“ค ์ค‘์—์„œ ์œ ์˜์ˆ˜์ค€ ์ƒ์œ„ 30๊ฐœ๋งŒ ์‹œ๊ฐํ™”ํ•˜์˜€๋‹ค. ๋ชจ๋“  ๋ถ„์„์€ ์‚ฌํšŒ๊ณผํ•™์„ ์œ„ํ•œ IBM ํ†ต๊ณ„ ํŒจํ‚ค์ง€(SPSS ver. 22; IBM, Armonk, NY, USA)์™€ ์–‘๋ฉด p value <0.05์™€ FDR ์‹œํ–‰ ํ›„ corrected p 0.05๊ฐ’์„ ๊ณ ๋ คํ•˜์—ฌ ํ†ต๊ณ„ํ•™์  ์œ ์˜์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.
๊ฒฐ ๊ณผ
๊ฒฐ ๊ณผ
1. ๋ฐ์ดํ„ฐ ํŠน์„ฑ(characteristic)
1. ๋ฐ์ดํ„ฐ ํŠน์„ฑ(characteristic)
์‹ฌ์ •์ง€ ํ›„ ํ™˜์ž ๋ ˆ์ง€์ŠคํŠธ๋ฆฌ(registry)์—์„œ ์ด 349๋ช…์˜ ์‹ฌ์ •์ง€ํ›„์ฆํ›„๊ตฐ ํ™˜์ž๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์ด ์ค‘ ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ•์„ ๋ฐ›์ง€ ์•Š์€ 34๋ช…, 72์‹œ๊ฐ„๋‚ด ์‹œํ–‰ํ•œ ๋‡ŒํŒŒ๊ฐ€ ์—†๋Š” 93๋ช…, ๋‡ŒํŒŒ๊ฐ€ ์‹ฌํ•œ ์žกํŒŒ ๋“ฑ์œผ๋กœ ํŒ๋…์ด ์–ด๋ ค์šด 39๋ช…์€ ์ตœ์ข…๋ถ„์„์—์„œ ์ œ์™ธ๋˜์–ด ์ตœ์ข…๋ถ„์„์‹œ ๋‚จ์€ ํ™˜์ž๋Š” ์ด 183๋ช…์ด๋‹ค(Fig. 1). 183๋ช… ์ค‘ ํ‡ด์›์‹œ 53๋ช…์˜ ํ™˜์ž์—์„œ ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„(CPC 1,2)๋ฅผ ๋ณด์˜€๊ณ , 130๋ช…์€ ๋‚˜์œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„(CPC 3-5)๋ฅผ ๋ณด์˜€๋‹ค(Table 1). ์—ฐ๊ตฌ ์ฐธ๊ฐ€์ž์˜ ํ‰๊ท  ์—ฐ๋ น์€ 54.30ยฑ15.27์„ธ์˜€์œผ๋ฉฐ ํ™˜์ž์˜ 67.2%๊ฐ€ ๋‚จ์„ฑ์ด์—ˆ๋‹ค. ๋˜ํ•œ CPC 1์ (21, 11.48%), CPC 2์ (32, 17.49%), CPC 3์ (29, 15.85%), CPC 4์ (35, 19.13%), CPC 5์ (66, 36.07%)์˜ ๋ถ„ํฌ๋ฅผ ๋ณด์˜€๋‹ค. ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ๋Š” ์ž๋ฐœ์ˆœํ™˜ํšŒ๋ณต ์‹œ๊นŒ์ง€ ์งง์€ ์‹ฌํ์†Œ์ƒ์ˆ (16.68ยฑ12.85 vs. 27.45ยฑ23.31, p<0.001)์ด ์ด๋ฃจ์–ด์กŒ๊ณ , ์ดˆ๊ธฐ ์‹ฌ์ „๋„์—์„œ ์ œ์„ธ๋™์ด ๊ฐ€๋Šฅํ•œ ๋ฆฌ๋“ฌ(52.8% vs. 29.2%; p=0.003)์„ ๋ณด์˜€์œผ๋ฉฐ ๋” ๋†’์€ ๊ธ€๋ž˜์Šค๊ณ ํ˜ผ์ˆ˜์ฒ™๋„(GCS) (5.66ยฑ2.99 vs. 3.65ยฑ1.99; p<0.001)๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ , ๋” ์ž‘์€ ๋™๊ณต์˜ ํฌ๊ธฐ(3.62ยฑ1.39 vs. 4.67ยฑ2.29, p<0.001)์™€ ๋” ๋†’์€ ๋นˆ๋„์˜ ๋™๊ณต๋ฐ˜์‚ฌ์˜ ์œ ์ง€(41 [85.4%] vs. 48 [36.9%]; p<0.001)๋ฅผ ๋ณด์˜€๋‹ค(Table 1).
2. ๋‡ŒํŒŒ๋ถ„์„ ๊ฒฐ๊ณผ
2. ๋‡ŒํŒŒ๋ถ„์„ ๊ฒฐ๊ณผ

1) ์œก์•ˆ์  ์ค‘์ฆ๋„ ๊ตฌ๋ถ„

1) ์œก์•ˆ์  ์ค‘์ฆ๋„ ๊ตฌ๋ถ„

์œก์•ˆ์  ๋‡ŒํŒŒ ํŒ๋…์—์„œ๋Š” (1) ๋ฐฐ๊ฒฝํŒŒ์–ต์ œ(background suppression) ์†Œ๊ฒฌ์€ ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ 27๋ช…(50.9%), ๋‚˜์œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ 98๋ช…(75.4%)์—์„œ ๋‚˜ํƒ€๋‚˜๊ณ (p<0.001), (2) ๋Œ๋ฐœํŒŒ์–ต์ œ(burst suppression)๋Š” ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ ์—†์—ˆ๊ณ , ๋‚˜์œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ 14๋ช…(10.8%)์—์„œ ๋‚˜ํƒ€๋‚ฌ๋‹ค(p=0.013). (3) ์•ŒํŒŒ ๋˜๋Š” ์„ธํƒ€ ์ฝ”๋งˆ๋Š” ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ 15๋ช…(28.3%), ๋‚˜์œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ๋งŒ 7๋ช…(5.4%)์—์„œ(p<0.001), (4) ์ฃผ๊ธฐ๋ฐฉ์ „(periodic discharge)์€ ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ ์—†์—ˆ๊ณ , ๋‚˜์œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ 11๋ช…(8.5%)์—์„œ ๋‚˜ํƒ€๋‚ฌ๋‹ค(p=0.029). ๊ทธ๋ฆฌ๊ณ  (5) ๋‡Œ์ „์ฆ๋ชจ์–‘๋ฐฉ์ „(epileptiform discharge)์€ ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ 2๋ช…(3.8%), ๋‚˜์œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ 24๋ช…(18.5%)์—์„œ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค(p=0.010) (Table 2).

2) ํŒŒ์›Œ์ŠคํŽ™ํŠธ๋Ÿผ๋ฐ€๋„๋ถ„์„

2) ํŒŒ์›Œ์ŠคํŽ™ํŠธ๋Ÿผ๋ฐ€๋„๋ถ„์„

ํŒŒ์›Œ์ŠคํŽ™ํŠธ๋Ÿผ๋ฐ€๋„(PSD)๋ถ„์„ ๊ฒฐ๊ณผ์™€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„ ์‚ฌ์ด์— ๋†’์€ ์—ฐ๊ด€์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋จผ์ € ๋‡Œ ์ „์ฒด ์˜์—ญ์—์„œ ๊ฐ ๋ฐด๋“œ์˜ ํŒŒ์›Œ์ŠคํŽ™ํŠธ๋Ÿผ๋ฐ€๋„์˜ ํ•ฉ์€ ์‹ ๊ฒฝ๊ณ„ ๋‚˜์œ ์˜ˆํ›„๊ตฐ์—์„œ ์„ธํƒ€ ํŒŒ์›Œ๊ฐ€ ์ฆ๊ฐ€๋˜์–ด ์žˆ์—ˆ๊ณ  ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ฐ€ ์ข‹์€ ๊ตฐ์—์„œ๋Š” ์•ŒํŒŒ ๋ฐด๋“œ์˜ ํŒŒ์›Œ๊ฐ€ ์ฆ๊ฐ€๋œ ์†Œ๊ฒฌ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ทธ ์™ธ์˜ ์ฃผํŒŒ์ˆ˜์—์„œ๋Š” ๋‘ ๊ตฐ ๊ฐ„์˜ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค(Fig. 2). ์ข€ ๋” ๋‡Œ ์˜์—ญ ๊ฐ„ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์˜ ์ฐจ์ด๋ฅผ ์„ธ๋ถ„ํ™”ํ•˜์—ฌ ์ž์„ธํžˆ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ 5๊ฐœ ์˜์—ญ์— ๊ธฐ์ดˆํ•˜์—ฌ ๋ณด๋‹ค ๋‡Œ ์˜์—ญ์„ ๋‚˜๋ˆ„๊ณ  ์„ธ๋ถ„ํ™”๋œ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ๋ณ„ ์ ˆ๋Œ€ ํŒŒ์›Œ(absolute power)๋ฅผ ๊ณ„์‚ฐํ•˜์˜€์„ ๋•Œ์— ์ข€ ๋” ์ž์„ธํ•œ ์ฐจ์ด๋ฅผ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋Š”๋ฐ ์‹ ๊ฒฝ๊ณ„ ์ข‹์€ ์˜ˆํ›„๋ฅผ ๋ณด์ด๋Š” ๊ตฐ์€ ์ „๋‘๋ถ€(frontal), ์ธก๋‘๋ถ€(temporal), ํ›„๋‘๋ถ€(occipital)์—์„œ ์•ŒํŒŒ1 ๋ฐด๋“œ์˜ ์ ˆ๋Œ€ ํŒŒ์›Œ๊ฐ€ ์œ ์˜๋ฏธํ•˜๊ฒŒ ์ฆ๊ฐ€๋˜์–ด ์žˆ์—ˆ๊ณ  ์•ŒํŒŒ2๋ถ€ํ„ฐ ๋ฒ ํƒ€1, 2 ๋ฐด๋“œ๊นŒ์ง€๋Š” 5๊ฐœ ๋ชจ๋“  ๋‡Œ ์˜์—ญ์—์„œ ์ ˆ๋Œ€์  ํŒŒ์›Œ์—์„œ ์ฐจ์ด๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค(Table 3, Fig. 3). ์ƒ๋Œ€์  ํŒŒ์›Œ(relative power)๋ถ„์„ ๊ฒฐ๊ณผ์—์„œ๋Š” ๋‘ ๊ตฐ ๊ฐ„์˜ ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ๋ณด๋‹ค ๊ด‘๋ฒ”์œ„ํ•œ ๋ถ€์œ„์—์„œ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค(Table 4, Fig. 4). ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„ ๊ตฐ์—์„œ ์•ŒํŒŒ1, 2 ๋ฐด๋“œ ๋ฐ ๋ฒ ํƒ€1 ๋ฐด๋“œ์˜ ์ƒ๋Œ€์  ํŒŒ์›Œ๋Š” ๊ฐ 5๊ฐœ์˜ ๋‡Œ ์˜์—ญ์—์„œ ๋ชจ๋‘ ์ฆ๊ฐ€ํ•˜์˜€๊ณ , ๋ฒ ํƒ€2 ๋ฐด๋“œ์—์„œ๋Š” ์ „๋‘๋ถ€(frontal), ์ค‘์‹ฌ๋ถ€(central)์™€ ๋‘์ •๋ถ€(parietal)์˜ ์˜์—ญ์—์„œ๋งŒ ์œ ์‚ฌํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๊ณ  ๊ทธ ์™ธ ์˜์—ญ์—์„œ๋Š” ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. ์ด์™€ ๋ฐ˜๋Œ€๋กœ ๋‚˜์œ ์˜ˆํ›„๊ตฐ์—์„œ๋Š” ๋ธํƒ€ ๋ฐด๋“œ์—์„œ ๋ชจ๋“  ๋‡Œ ์˜์—ญ์—์„œ ์ฆ๊ฐ€๋œ ์ƒ๋Œ€์  ํŒŒ์›Œ๋ฅผ ๋ณด์˜€๊ณ  ๋ฒ ํƒ€3 ๋ฐด๋“œ์—์„œ ๊ฐ๋งˆ ๋ฐด๋“œ๊นŒ์ง€์˜, ์ฆ‰ 20 Hz ์ด์ƒ์˜ ๋†’์€ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์˜ ์ƒ๋Œ€์  ํŒŒ์›Œ๊ฐ€ ๊ฐ 5๊ฐœ์˜ ๋‡Œ ์˜์—ญ์—์„œ ๋ชจ๋‘ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋‘ ๊ฐœ์˜ ๋‹ค๋ฅธ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ ๊ฐ„ ์ŠคํŽ™ํŠธ๋Ÿผ๋ฐ€๋„์˜ ํŒŒ์›Œ ๋น„์œจ์€ ๋‘ ๊ตฐ ๊ฐ„์— ํ†ต๊ณ„ํ•™์ ์œผ๋กœ ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค.

3) ๋‚ด์ •์ƒํƒœํšŒ๋กœ์—์„œ์˜ ํ—ˆ์ˆ˜๋ถ€ ์ผ๊ด€์„ฑ(iCoh)๋ถ„์„

3) ๋‚ด์ •์ƒํƒœํšŒ๋กœ์—์„œ์˜ ํ—ˆ์ˆ˜๋ถ€ ์ผ๊ด€์„ฑ(iCoh)๋ถ„์„

๋‚ด์ •์ƒํƒœํšŒ๋กœ(DMN)์˜ ์—ฐ๊ฒฐ์„ฑ๋ถ„์„์—์„œ๋Š” ์‹ ๊ฒฝ๊ณ„ ์ข‹์€ ์˜ˆํ›„๊ตฐ์—์„œ ๋‚˜์œ ์˜ˆํ›„๋ฅผ ๋ณด์ด๋Š” ๊ตฐ๋ณด๋‹ค ํ—ˆ์ˆ˜๋ถ€ ์ผ๊ด€์„ฑ(iCoh)๊ฐ’์˜ ์œ ์˜ํ•œ ์ฆ๊ฐ€๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๋Š” ์ƒ ์ „๋‘์—ฝ(superior frontal lobe), ์ „๋ฐฉ ๋ฐ ํ›„๋ฐฉ ๋Œ€์ƒํ”ผ์งˆ(anterior and posterior cingulate), ์ƒ์ธก๋‘์—ฝ(superior temporal), ํ•˜๋‘์ •์—ฝํ”ผ์งˆ(inferior parietal cortex), ํ•ด๋งˆ๊ณ์ด๋ž‘(para hippocampal gyrus)๊ณผ ๊ฐ™์€ ์ „๋ฐฉ ๋ฐ ํ›„๋ฐฉ ์˜์—ญ์˜ DMN์˜ ๊ฑฐ์˜ ๋ชจ๋“  ์˜์—ญ์—์„œ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ์•ŒํŒŒ1 ๋ฐด๋“œ์—์„œ๋Š” ์ฃผ๋กœ ํ›„๋ฐฉ ์˜์—ญ์˜ DMN์˜ ์˜์—ญ๋“ค์ด DMN์˜ ์ค‘์•™ ๋…ธ๋“œ๋ฅผ ํ˜•์„ฑํ•˜๋Š” ํ›„๋ฐฉ ๋Œ€์ƒํ”ผ์งˆ(posterior cingulate cortec, PCC)๊ณผ์˜ ์—ฐ๊ฒฐ์„ฑ์ด ์ฆ๊ฐ€๋˜์–ด ์žˆ์—ˆ๋Š”๋ฐ ์–‘์ธก ๋ชจ๋‘์—์„œ ์—ฐ๊ฒฐ์„ฑ์ด ์ฆ๊ฐ€๋˜์–ด ์žˆ์—ˆ๊ณ  ์ฃผ๋กœ ์šฐ์ธก ์ธก๋‘์—ฝ๊ณผ ํ•ด๋งˆ๊ณ์ด๋ž‘ ๋ฐ ๋‚ดํ›„๊ฐํ”ผ์งˆ(entorhinal cortex) ๋“ฑ์˜ ์šฐ์ธก ๋ณ€์—ฐ๊ณ„(limbic system)์™€ ๊ด€๋ จ๋œ ์˜์—ญ๋“ค๊ณผ์˜ ์—ฐ๊ฒฐ์„ฑ์ด ์ฆ๊ฐ€๋˜์–ด ์žˆ์—ˆ๋‹ค. ๋ฐ˜๋ฉด ์•ŒํŒŒ2 ์ฃผํŒŒ์ˆ˜ ๋ฐด๋“œ์—์„œ๋Š” ์ขŒ์šฐ์˜ ๋‘์ •์—ฝ(frontal)๊ณผ ์ขŒ์šฐ ์ „๋ฐฉ ๋Œ€์ƒํ”ผ์งˆ(anterior cingulate cortex, ACC) ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ์„ฑ์ด ์ฆ๊ฐ€๋˜์–ด ์žˆ์—ˆ๊ณ  ์—ญ์‹œ ํ›„๋ฐฉ ์˜์—ญ์—์„œ๋„ PCC๋ฅผ ํฌํ•จํ•œ ์ขŒ์šฐ ์ธก๋‘์—ฝ๊ณผ ํ•ด๋งˆ๊ณ์ด๋ž‘ ๋ฐ ๋‚ดํ›„๊ฐํ”ผ์งˆ(entorhinal cortex) ๋“ฑ์˜ ๋ณ€์—ฐ๊ณ„(limbic system)๊ด€๋ จ ์˜์—ญ๋“ค์˜ ์ขŒ์šฐ ์—ฐ๊ฒฐ์„ฑ์ด ์ฆ๊ฐ€๋œ ๊ฒƒ์ด ์ž˜ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ์ƒ๋Œ€์ ์œผ๋กœ ์ „๋‘์—ฝ ๊ทน(frontal pole), ์ƒ๋‘์ •์—ฝํ”ผ์งˆ(superior parietal cortex), ๊ฐ™์€ ์ƒ๋ฐฉ ์˜์—ญ์˜ ํ—ˆ์ˆ˜๋ถ€ ์ผ๊ด€์„ฑ(iCoh)์ด ์ฆ๊ฐ€ํ•˜์ง€ ์•Š์•˜๋‹ค(Fig. 5).
๊ณ  ์ฐฐ
๊ณ  ์ฐฐ
์ด ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ์ดˆ๊ธฐ ๋‡ŒํŒŒ ๊ธฐ๋ก์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ •๋Ÿ‰์  ๋‡ŒํŒŒ๋ถ„์„์ด ์‹ฌ์ •์ง€ํ›„์ฆํ›„๊ตฐ ํ™˜์ž์˜ ์˜ˆํ›„์˜ˆ์ธก์ง€ํ‘œ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.
๋ณธ ์—ฐ๊ตฌ์—์„œ๋„ ์ƒ๋‹น์ˆ˜์˜ ์•…์„ฑ ๋‡ŒํŒŒ ํŒจํ„ด์„ ๋ณด์ด๋Š” ํ™˜์ž๋“ค ์ค‘์—์„œ ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‹ฌ์ •์ง€ํ›„์ฆํ›„๊ตฐ ํ™˜์ž์—์„œ ๋‡ŒํŒŒ์˜ ์œก์•ˆ์  ๋ถ„์„์€ ์•…์„ฑ๊ณผ ์–‘์„ฑ ๊ฐ™์€ ๋‡ŒํŒŒ ์–‘์ƒ์˜ ์ด๋ถ„๋ฒ•์  ์ •์˜๋ฅผ ์‚ฌ์šฉํ•ด์™”๋‹ค. ๋‡ŒํŒŒ์—์„œ ํ—ˆํ˜ˆ์„ฑ์†์ƒ ํ›„์˜ ๋‡Œ์ „์ฆ์ง€์†์ƒํƒœ, ์•ŒํŒŒ์ฝ”๋งˆ, ๋Œ๋ฐœ์„ฑ ํ˜น์€ ์ „๋ฐ˜์  ์–ต์ œ๊ฐ€ ์กด์žฌํ•  ๋•Œ ์•…์„ฑ์œผ๋กœ ๊ฐ„์ฃผํ•˜์˜€๋‹ค. ์ „๋ฐ˜์  ์„œํŒŒ ํ™œ๋™์„ฑ, ์ „๋ฐ˜์  ์•ŒํŒŒ-์„ธํƒ€ ์ฃผํŒŒ์ˆ˜ ๋ฐ ๋‡Œ์ „์ฆ๋ชจ์–‘๋ฐฉ์ „์˜ ์กด์žฌ๋Š” ์–‘์„ฑ ๋˜๋Š” ๋ถˆ๋ถ„๋ช…ํ•œ ๊ฒƒ์œผ๋กœ ๊ฐ„์ฃผํ•˜์˜€๋‹ค. ์ตœ๊ทผ์˜ ์—ฐ๊ตฌ๋ฅผ ๋ณด๋ฉด ์‹ฌ์ •์ง€ ํ›„ 12%์˜ ์ƒ์กด์ž์™€ 86%์˜ ๋น„์ƒ์กด์ž๊ฐ€ ์ฒซ 3์ผ๊ฐ„ ์•…์„ฑ ๋‡ŒํŒŒ ์–‘์ƒ์„ ๋ณด์˜€๋‹ค[23]. ์ž๋ฐœ์ˆœํ™˜ํšŒ๋ณต ํ›„ ์ฒซ 24์‹œ๊ฐ„ ๋™์•ˆ์˜ ์•…์„ฑ ๋‡ŒํŒŒ ์†Œ๊ฒฌ์€ ๋‚˜์œ ์˜ˆํ›„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋ฉฐ 29-84%์— ์ด๋ฅด๋Š” ๋ฏผ๊ฐ๋„์™€ 0-8%์— ์ด๋ฅด๋Š” ์œ„์–‘์„ฑ๋ฅ ์„ ๋ณด์ธ๋‹ค[24,25]. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋„ ๋‡ŒํŒŒ์˜ ์œก์•ˆ์  ์ค‘์ฆ๋„๋ฅผ ๋น„๊ตํ•˜์˜€์„ ๋•Œ ๋‚˜์œ ์˜ˆํ›„ ๊ทธ๋ฃน์—์„œ ๋ฐฐ๊ฒฝํŒŒ์–ต์ œ, ๋Œ๋ฐœํŒŒ์–ต์ œ, ์ฃผ๊ธฐ๋ฐฉ์ „, ๋‡Œ์ „์ฆ๋ชจ์–‘๋ฐฉ์ „์˜ ๋ฐœ์ƒ ๋นˆ๋„๊ฐ€ ๋” ๋†’์•˜์œผ๋ฉฐ ์•ŒํŒŒ ๋˜๋Š” ์„ธํƒ€ ์ฝ”๋งˆ์˜ ๊ฒฝ์šฐ์—๋Š” ์ข‹์€ ์˜ˆํ›„๊ตฐ์—์„œ ๋ฐœ์ƒ ๋นˆ๋„๊ฐ€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•˜๊ฒŒ ๋†’์•˜๋‹ค. ์ฆ‰ ์œก์•ˆ์  ๋‡ŒํŒŒ์— ์˜์กดํ•œ ํŒ๋‹จ์— ํ•œ๊ณ„๊ฐ€ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.
2006๋…„ American Academy of Neurology์˜ ์˜ˆํ›„์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ๋Š” ์‹ฌ์ •์ง€ ๋ฐ ์ž๋ฐœ์ˆœํ™˜ํšŒ๋ณต ํ›„์˜ ๋‡ŒํŒŒ๊ธฐ๋ก ์‹œ์ž‘ ์‹œ๊ธฐ๋‚˜ ๊ธฐ๋ก์‹œ๊ฐ„์— ๋Œ€ํ•œ ๊ถŒ๊ณ ์‚ฌํ•ญ์„ ์ œ์‹œํ•˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค[26]. ๊ทธ๋Ÿฌ๋‚˜ 2014๋…„ European Resuscitation Council and Society of Intensive Care Medicine์˜ ๊ฐ€์ด๋“œ๋ผ์ธ์— ๋”ฐ๋ฅด๋ฉด ์ž๋ฐœ์ˆœํ™˜ํšŒ๋ณต 72์‹œ๊ฐ„ ์ดํ›„ ๋‡ŒํŒŒ๋ฅผ ๊ธฐ๋กํ•˜๋Š” ๊ฒƒ์„ ๊ถŒ๊ณ ํ•˜์˜€๋‹ค[27]. ๋Œ€์กฐ์ ์œผ๋กœ ์ตœ๊ทผ ์—…๋ฐ์ดํŠธ๋œ ๊ฐ€์ด๋“œ๋ผ์ธ์€ ์ง€์†์ ์ธ ๋‡ŒํŒŒ ๋ชจ๋‹ˆํ„ฐ๋ง ๋˜๋Š” ๋นˆ๋ฒˆํ•œ ๊ฐ„ํ—์ ์ธ ๋‡ŒํŒŒ์˜ ์‹œํ–‰์‹œ โ€œ์ตœ๋Œ€ํ•œ ๋น ๋ฅด๊ฒŒโ€ ๋˜๋Š” โ€œ์ตœ์†Œ ์ž๋ฐœ์ˆœํ™˜ํšŒ๋ณต 12-24์‹œ๊ฐ„๋‚ดโ€๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์žˆ๋‹ค[28]. ์ด๋Š” ๋ณด๋‹ค ๋น ๋ฅธ ์‹œ๊ธฐ์—, ๋ณด๋‹ค ์ •ํ™•ํ•˜๊ฒŒ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์›ํ•˜๋Š” ์ž„์ƒ์  ํ•„์š”์˜ ์ฆ๊ฐ€๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ฒฝ์šฐ 2016๋…„ ์—ฐ๋ช…์˜๋ฃŒ๊ฒฐ์ •๋ฒ• ๊ฐœ์ •์œผ๋กœ 2018๋…„ 2์›”๋ถ€ํ„ฐ ์งˆํ™˜์— ์ƒ๊ด€์—†์ด ํšŒ๋ณต ๋ถˆ๊ฐ€๋Šฅํ•œ ์ž„์ข…์— ์ž„๋ฐ•ํ•œ ๋ชจ๋“  ์—ฐ๋ น์˜ ์ค‘ํ™˜์ž๋กœ ํ™•๋Œ€ ์ ์šฉ๋จ์— ๋”ฐ๋ผ ํ™˜์ž์˜ ์กฐ๊ธฐ์— ์ •ํ™•ํ•œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„์˜ˆ์ธก์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ์ด์ „๋ณด๋‹ค ๋”์šฑ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์ข‹์€ ์˜ˆํ›„์ผ ๋•Œ ์ •๋Ÿ‰์  ๋‡ŒํŒŒ์˜ ์ดˆ๊ธฐ ํ‘œ์ง€์ž๊ฐ€ ํ˜„์žฌ ์ž„์ƒ ํ™˜๊ฒฝ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.
ํ•œ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž๋ฐœ์ˆœํ™˜ํšŒ๋ณต ํ›„ 12์‹œ๊ฐ„ ๋’ค ์œ ๋ฆฌํ•œ ๋‡ŒํŒŒ ์–‘์ƒ, ์ฆ‰, ์—ฐ์†์ ์ด๊ณ  ๋ฐ˜์‘์„ฑ์ด ์žˆ๋Š” ๋ฐฐ๊ฒฝํŒŒ๋ฅผ ๋ณด์ด๋Š” ๊ฒฝ์šฐ ์ข‹์€ ์˜ˆํ›„๋ฅผ ์˜ˆ์ธกํ•จ์— ์žˆ์–ด 51%์˜ ๋ฏผ๊ฐ๋„๋ฅผ ๋ณด์ด์ง€๋งŒ ์œ„์–‘์„ฑ๋ฅ ์€ 0-12%๋กœ ๋‚ฎ๋‹ค๊ณ  ๋ณด๊ณ ํ•˜์˜€๋‹ค[29]. ๊ทธ๋Ÿฌ๋‚˜ ๋˜๋‹ค๋ฅธ ์—ฐ๊ตฌ์—์„œ๋Š” ์–‘์„ฑ ๋‡ŒํŒŒ ์–‘์ƒ๋งŒ์œผ๋กœ๋Š” ํ™˜์ž์˜ ์‹ ๊ฒฝ๊ณ„ ํšŒ๋ณต์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์—†๋‹ค๊ณ  ์ฃผ์žฅํ•˜์˜€๋‹ค[30]. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋” ์ƒ์„ธํ•œ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์„ ๊ตฌ๋ถ„ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ๋‡Œ ์˜์—ญ์— ๋Œ€ํ•ด ํŒŒ์›Œ์ŠคํŽ™ํŠธ๋Ÿผ๋ฐ€๋„(PSD)๋ถ„์„์„ ์‹œํ–‰ํ•˜์˜€๊ณ , ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๊ตญ์†Œ ํ•ด๋ถ€ํ•™์  ํŠน์„ฑ์„ ์ž˜ ๋ฐ˜์˜ํ•œ ๋ณด๋‹ค ๊ตฌ์ฒด์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ ˆ๋Œ€์  ํŒŒ์›Œ์˜ ๋ฐ ์ƒ๋Œ€์  ํŒŒ์›Œ์˜ ๋ถ„ํฌ๋Š” ๋‘ ๊ตฐ ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ์œ ์šฉํ•œ ์ •๋Ÿ‰์  ๋‡ŒํŒŒ์˜ ์ง€ํ‘œ๋กœ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ ์ฃผ์—ˆ๋Š”๋ฐ ์ ˆ๋Œ€์  ํŒŒ์›Œ๋Š” ์ข‹์€ ์˜ˆํ›„๊ตฐ์˜ ์•ŒํŒŒ1, 2์™€ ๋ฒ ํƒ€1, 2 ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์—์„œ ๋†’์•˜์œผ๋ฉฐ ์ „๋‘๋ถ€์™€ ์ค‘์‹ฌ๋ถ€์— ์ฃผ๋กœ ๋ถ„ํฌํ•˜๊ณ  ์žˆ๋‹ค. ์ƒ๋Œ€์  ํŒŒ์›Œ๋Š” ์ข‹์€ ์˜ˆํ›„๊ตฐ์˜ ์„ธํƒ€ํŒŒ์™€ ์•ŒํŒŒ1, 2 ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์—์„œ ๊ทธ๋ฆฌ๊ณ  ๋ฒ ํƒ€1์—์„œ ํฌ๊ฒŒ ๋†’์•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ข‹์€ ์˜ˆํ›„๊ตฐ์—์„œ์˜ ์ด๋Ÿฌํ•œ ์ƒ๋Œ€์  ํŒŒ์›Œ์˜ ์ฆ๊ฐ€ ์–‘์ƒ์€ ๋ฒ ํƒ€2 ์ด์ƒ์˜ ์ฆ‰, 20 Hz ์ด์ƒ์˜ ๋†’์€ ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„์—์„œ๋Š” ๋ฐ˜์ „๋˜๋Š”๋ฐ ๋ฒ ํƒ€3์™€ ๊ฐ๋งˆ ์ด์ƒ์˜ ๋†’์€ ์ฃผํŒŒ์ˆ˜์˜ ์ƒ๋Œ€์  ํŒŒ์›Œ๋Š” ์ข‹์€ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ตฐ์—์„œ ํฌ๊ฒŒ ๊ฐ์†Œํ•˜๋Š” ์–‘์ƒ์„ ๋ณด์ด๊ณ , ์˜คํžˆ๋ ค ๋‚˜์œ ์˜ˆํ›„๊ตฐ์—์„œ๋Š” ์ฆ๊ฐ€ํ•˜๋Š” ์†Œ๊ฒฌ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐœ๊ฒฌ์€ ์ธ๊ฐ„์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์ด์ „์˜ ์—ฐ๊ตฌ๋“ค์—์„œ๋Š” ๋” ๋น ๋ฅด๊ณ , ์„ธ๋ถ„ํ™”๋œ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ ๋ณ„๋กœ ๋ถ„์„ํ•˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์— ์•„์ง๊นŒ์ง€ ๋ณด๊ณ ๋œ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ƒˆ๋กญ๊ฒŒ ํ™•์ธ๋œ ๊ฒƒ์œผ๋กœ ์ด์ „ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ณด๊ณ ๋˜์ง€ ์•Š์€ ์ƒˆ๋กœ์šด ๋ณด๊ณ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋™๋ฌผ ์—ฐ๊ตฌ ์ค‘์—์„œ๋Š” ์ผ์น˜๋˜๋Š” ๋ณด๊ณ ๊ฐ€ ์žˆ์—ˆ๋Š”๋ฐ ๊ธ‰๊ฒฉํ•œ ๋ฌด์ˆ˜์ถ•์„ฑ ์‹ฌ์ •์ง€๋ฅผ ๋ฐœ์ƒ์‹œ์ผœ ๋ฌด์‚ฐ์†Œ ๋‡Œ์†์ƒ์ด ์œ ๋ฐœ๋œ ์„ค์น˜๋ฅ˜์—์„œ๋Š” ๋‡ŒํŒŒ์—์„œ ๊ฐ๋งˆ ํ™œ๋™์˜ ๊ธ‰๊ฒฉํ•œ ์ฆ๊ฐ€์™€ ํ•จ๊ป˜ ์ด ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์˜ ๊ธฐ๋Šฅ์ ์ด๊ณ  ํšจ์œจ์ ์ธ ์—ฐ๊ฒฐ์„ฑ ๊ฐ•ํ™”๊ฐ€ ๋ณด๊ณ ๋˜์—ˆ๋‹ค[31].
์ด ์—ฐ๊ตฌ์—์„œ DMN์˜ ํ—ˆ์ˆ˜๋ถ€ ์ผ๊ด€์„ฑ(iCoh)์€ ์ •๋Ÿ‰์  ๋‡ŒํŒŒ์˜ ๊ธฐ๋Šฅ์  ์—ฐ๊ฒฐ์„ฑ์˜ ๋ณ€์ˆ˜๋กœ์„œ ๊ณ„์‚ฐ๋˜์—ˆ๊ณ , ์‹ ๊ฒฝ๊ณ„ ์ข‹์€ ์˜ˆํ›„๊ตฐ์—์„œ ๋‚˜์œ ์˜ˆํ›„๋ฅผ ๋ณด์ด๋Š” ๊ตฐ์— ๋น„ํ•˜์—ฌ ์ „๋ฐฉ ๋ฐ ํ›„๋ฐฉ ๋ถ€์œ„์˜ DMN์˜ ์—ฐ๊ฒฐ์„ฑ์˜ ์ฐจ์ด๊ฐ€ ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. DMN์˜ iCoh์˜ 2D diagram์ด ๊ทธ๋ฆผ์œผ๋กœ ํ‘œํ˜„๋  ๋•Œ ๋‘ ๊ตฐ ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ์„ฑ์˜ ์ฐจ์ด๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค(Fig. 5). ์ด๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค[10-15]์—์„œ ์˜์‹์ด ํšŒ๋ณต๋œ ์ฝ”๋งˆ ํ™˜์ž์—์„œ๋Š” DMN๊ฐ€ ์ž˜ ์œ ์ง€๋˜์–ด ์žˆ์—ˆ๊ณ , ์˜์‹ํšŒ๋ณต์ด ๋˜์ง€ ์•Š์€ ์ฝ”๋งˆ ํ™˜์ž๋‚˜ ์‹๋ฌผ ์ƒํƒœ(vegetative stat)์˜ ํ™˜์ž์—์„œ DMN์ด ์†์ƒ๋œ ๊ฒƒ์„ ๋ณด๊ณ ํ•œ fMRI ์—ฐ๊ตฌ๋“ค๊ณผ ํ—ˆํ˜ˆ์„ฑ ๋‡Œ์†์ƒ์—์„œ ๋‡Œ์˜ ๋‹ค๋ฅธ ์˜์—ญ ๊ฐ„์˜ ๊ธฐ๋Šฅ์  ์—ฐ๊ฒฐ์„ฑ(functional connectivity)์˜ ์ €ํ•˜๋ฅผ ๋‡ŒํŒŒ์˜ ์ผ๊ด€์„ฑ(coherence)์ด ๊ฐ์†Œ๋œ ๊ฒƒ์„ ํ†ตํ•ด ํ™•์ธํ•œ ๊ธฐ์กด์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค๊ณผ ์ผ์น˜ํ•˜๋Š” ๊ฒฐ๊ณผ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ์•ŒํŒŒ ๋Œ€์—ญ์—์„œ ์œ ์˜๋ฏธํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๊ฐ€์žฅ ์ž˜ ๊ด€์ฐฐ๋˜๋Š” ๊ฒƒ์€ ์ด์ „ ์—ฐ๊ตฌ๋“ค์—์„œ fMRI์˜ ํ˜ˆ๋ฅ˜์‚ฐ์†Œ์ˆ˜์ค€(blood oxygen level dependent, BOLD)๊ณผ ๋‡ŒํŒŒ์˜ ์•ŒํŒŒ ๋Œ€์—ญ ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ์ด ๊ฐ€์žฅ ์ž˜ ๋ณด์˜€๋˜ ์ ๊ณผ ์—ฐ๊ด€์„ฑ์ด ์žˆ์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ DMN์˜ ๊ธฐ์กด์˜ ๋‡ŒํŒŒ์—ฐ๊ตฌ๋“ค์—์„œ ์ฃผ๋กœ ์•ŒํŒŒ ์ด์ƒ์˜ ์ฃผํŒŒ์ˆ˜์—์„œ ๊ฐ€์žฅ ์ž˜ ๋‚ด์ •์ƒํƒœํšŒ๋กœ์˜ ๋ณ€ํ™”๊ฐ€ ์ž˜ ๋ฐ˜์˜๋˜๋Š” ํŠน์„ฑ๊ณผ ์—ฐ๊ด€์ด ์žˆ์„ ์ˆ˜ ์žˆ๋‹ค[32]. ํ•œํŽธ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๊ฐ€ ๋‚˜์œ ๊ตฐ์—์„œ ์ผ๋ถ€ DMN์˜ ์—ฐ๊ฒฐ์„ฑ์˜ ์ฆ๊ฐ€๊ฐ€ ๋ธํƒ€์™€ ๋ฒ ํƒ€2์—์„œ ๊ทน์†Œ์ˆ˜ ์˜์—ญ์—์„œ ๊ด€์ฐฐ๋˜์—ˆ์œผ๋‚˜ ์ด์™ธ์˜ ์ฃผํŒŒ ๋Œ€์—ญ์—์„œ๋Š” ๋‘ ๊ตฐ ๊ฐ„์˜ ์ฐจ์ด๊ฐ€ ๊ด€์ฐฐ๋˜์ง€ ์•Š์•˜๋‹ค(Supplementary Fig.).
๋ณธ ์—ฐ๊ตฌ๋Š” ์˜์‹๊ณผ ์—ฐ๊ด€๋œ ๋„คํŠธ์›Œํฌ์ธ DMN์˜ ๋น„์ •์ƒ์ ์ธ ๊ธฐ๋Šฅ์ด ํ—ˆํ˜ˆ์„ฑ ๋‡Œ์†์ƒ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ์ง€ํ‘œ๋กœ์˜ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด๋Š” ์‹ฌ์ •์ง€ ํ›„ ํ™˜์ž์˜ ์‹ ๊ฒฝํ•™์  ์˜ˆํ›„๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์ฒซ ๋‹จ๊ณ„์ธ ์˜์‹ ํšŒ๋ณต์˜ ์ง€์—ฐ์„ ๊ฐ€์ ธ์˜ค๊ฒŒ ๋จ์œผ๋กœ ๋‚˜์œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„์™€ ๋ฐ€์ ‘ํ•œ ์—ฐ๊ด€์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. ๋˜ํ•œ ์‹ฌ์ •์ง€ ํ›„ ์ƒ์กด ํ™˜์ž๋“ค์—์„œ ์ž์ฃผ ๊ด€์ฐฐ๋˜๋Š” ๊ธฐ์–ต๋ ฅ์žฅ์• ์™€์˜ ์—ฐ๊ด€์„ฑ๋„ ์ƒ๊ฐํ•ด ๋ณผ ์ˆ˜ ์žˆ๊ฒ ๋‹ค.
๋ณธ ์—ฐ๊ตฌ๋Š” ์ฒ˜์Œ์œผ๋กœ 72์‹œ๊ฐ„ ์ด๋‚ด์˜ ๋‡ŒํŒŒ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ—ˆ์ˆ˜๋ถ€ ์ผ๊ด€์„ฑ(iCoh)์„ ๊ณ„์‚ฐํ•˜์—ฌ DMN์˜ ์—ฐ๊ฒฐ์„ฑ์„ ๋ถ„์„ํ•จ์œผ๋กœ์จ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„์˜ ํŠน์„ฑ๊ณผ ์˜์‹์˜ ํšŒ๋ณต์„ ์˜ˆ์ธกํ•˜๋Š” ๋ฐ ์ด๋Ÿฌํ•œ ๋ถ„์„์ด ํ‰๊ฐ€์— ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์Œ์„ ์ฒ˜์Œ์œผ๋กœ ํ™•์ธํ•œ ์—ฐ๊ตฌ์ด๋‹ค.
๊ทธ๋Ÿฌ๋‚˜ ์ด ์—ฐ๊ตฌ๊ฐ€ ๊ฐ€์ง€๋Š” ๋ช‡ ๊ฐ€์ง€ ํ•œ๊ณ„์ ์ด ์žˆ๋Š”๋ฐ ๋ชฉํ‘œ์ฒด์˜จ์š”๋ฒ•์„ ์‹ค์‹œํ•˜๋Š” ๋™์•ˆ ์ง„์ •๊ณผ ๋–จ๋ฆผ์˜ ๋ฐฉ์ง€๋ฅผ ์œ„ํ•ด ์ง€์†์  remifentanil ์ •๋งฅ ์ฃผ์ž…, ์ง€์†์  midazolam ์ •๋งฅ ์ฃผ์ž…์ด ์žˆ์—ˆ๊ณ , ์ด ๊ธฐ๊ฐ„ ๋™์•ˆ ๋‡ŒํŒŒ๊ฐ€ ์ธก์ •๋˜์–ด ๋‡ŒํŒŒ์—์„œ remifentanil ๋ฐ midazolam์˜ ์˜ํ–ฅ์„ ๋ฐฐ์ œํ•  ์ˆ˜ ์—†๋‹ค๋Š” ์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด์˜ ์—ฐ๊ตฌ๋“ค ์ค‘ ์‹ฌ์ •์ง€ ํ›„ ์ €์ฒด์˜จ์š”๋ฒ•์„ ์‹œํ–‰ํ•œ ์†Œ์•„ ํ™˜์ž๋“ค์˜ ์ง€์†์  ๋‡ŒํŒŒ์—ฐ๊ตฌ์—์„œ ๊ธฐ๋Šฅ์  ์—ฐ๊ฒฐ์„ฑ(functional connectivity)์„ ์ผ๊ด€์„ฑ(coherence)์œผ๋กœ ๋ถ„์„ํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์—์„œ ์ €์ฒด์˜จ์š”๋ฒ•์ด ์ผ๊ด€์„ฑ(coherence)์— ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š๋Š”๋‹ค๊ณ  ๋ณด๊ณ ํ•˜์˜€๋‹ค[14].
์š”์•ฝํ•˜์ž๋ฉด ์ด ์—ฐ๊ตฌ๋Š” ์‹ฌ์ •์ง€ํ›„์ฆํ›„๊ตฐ ํ™˜์ž์˜ ๋ณด๋‹ค ์‹ ์†ํ•˜๊ณ  ์ •ํ™•ํ•œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„ ํ‰๊ฐ€๋ฅผ ๋•๊ธฐ ์œ„ํ•˜์—ฌ ์ดˆ๊ธฐ ๋‡ŒํŒŒ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ •๋Ÿ‰์  ๋‡ŒํŒŒ์˜ ์กฐ๊ธฐ์ง€ํ‘œ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ธ์ž๋“ค์„ ๋ฐœ๊ตดํ•˜์—ฌ ๊ทธ ์œ ์šฉ์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์‹œํ–‰๋˜์—ˆ์œผ๋ฉฐ ์ฃผ๋œ ๋ฐœ๊ฒฌ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. 1) ์ •๋Ÿ‰์  ๋‡ŒํŒŒ๋ถ„์„์—์„œ ํŒŒ์›Œ์ŠคํŽ™ํŠธ๋Ÿผ๋ฐ€๋„(PSD)๋ถ„์„์€ ๋‡ŒํŒŒ ํ•ด์„์„ ๊ฐ๊ด€์ ์œผ๋กœ ์‹œํ–‰ํ•  ์ˆ˜ ์žˆ๊ณ  ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ 2) ํ—ˆ์ˆ˜๋ถ€ ์ผ๊ด€์„ฑ(iCoh)์„ ์‚ฌ์šฉํ•œ ๋‚ด์ •์ƒํƒœํšŒ๋กœ(DMN)์˜ ์—ฐ๊ฒฐ์„ฑ ๋ณ€ํ™”๋Š” ํ—ˆํ˜ˆ์„ฑ ๋‡Œ์†์ƒ์—์„œ ์˜์‹ ํšŒ๋ณต์„ ํฌํ•จํ•œ ์‹ ๊ฒฝ๊ณ„์˜ˆํ›„์™€ ์žฅ๊ธฐ์  ์ธ์ง€์žฅ์• ๋ฅผ ์„ค๋ช…ํ•˜๋Š” ๋ฐ ์˜๋ฏธ ์žˆ๋Š” ๋ฐœ๊ฒฌ์ด๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ •๋Ÿ‰์  ๋‡ŒํŒŒ๋ถ„์„์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹ฌ์ •์ง€ํ›„์ฆํ›„๊ตฐ(PCAS) ํ™˜์ž์—์„œ ์‹ ๊ฒฝ๊ณ„ ์˜ˆํ›„๋ฅผ ์˜ˆ์ธกํ•จ์— ์žˆ์–ด ํ—ˆ์ˆ˜๋ถ€ ์ผ๊ด€์„ฑ(iCoh)์„ ์‚ฌ์šฉํ•œ ๋‚ด์ƒํƒœํšŒ๋กœ(DMN)๋ถ„์„์˜ ์œ ์šฉ์„ฑ์„ ๋ณด์—ฌ์ฃผ๋Š” ์ฒซ ์—ฐ๊ตฌ๋กœ์„œ์˜ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค.

Supplementary Material

Supplementary Material

Supplementaryย Figure.
jkna-38-4-260-suppl1.pdf
Supplementaryย Table.
jkna-38-4-260-suppl2.pdf

Figureย 1.
Study flow. TTM; targeted temperature management, EEG; electroencephalography, QEEG; quantitative electroencephalography, PSD; power spectral density.
jkna-38-4-260f1.tif
Figureย 2.
The comparison of PSD in each frequency band between patients groups with favorable (good) and poor (poor) neurologic outcomes. The PSD regarding each frequency band were calculated and integrated in whole brain area PSD of alpha frequency band is increased in good neurological outcome group compared with poor outcome group. PSD; power spectral density.
jkna-38-4-260f2.tif
Figureย 3.
Topographical maps of absolute power in PSD in patients groups with poor (poor) and favorable (good) neurologic outcomes. The absolute spectral power from alpha 1, 2, beta 1 and 2 are increased in good outcome group (C-F). (A) Delta band. (B) Theta band. (C) Alpha 1 band. (D) Alpha 2 band. (E) Beta 1 band. (F) Beta 2 band. (G) Beta 3 band. (H) Gamma. PSD; power spectral density.
jkna-38-4-260f3.tif
Figureย 4.
Topographical maps of relative power in PSD in patients groups with poor (poor) and favorable (good) neurologic outcomes. The relative spectral power from alpha 1, 2, beta 1 and 2 are increased in good outcome group (B-F). Moreover, the relative spectral power from delta, beta 3 and gamma are increased in poor outcome group (A, G, H). (A) Delta band. (B) Theta band. (C) Alpha 1 band. (D) Alpha 2 band. (E) Beta 1 band. (F) Beta 2 band. (G) Beta 3 band. (H) Gamma. PSD; power spectral density.
jkna-38-4-260f4.tif
Figureย 5.
Difference of iCoh of DMN in patients groups with poor (poor) and favorable (good) neurologic outcomes. (A, B) There are significant increase of iCoh in good neurologic outcome group on alpha 1-2 bands. The line represents the differences of iCoh of DMN between two groups. The color bar showed the p-value range and the color of the line represent the p-value. The color of the box of ROIs means the average power of the iCoh. The top thirty of p-value were displayed. (A) Alpha 1 frequency (8-9.99 Hz) in DMN. (B) Alpha 2 frequency (10-11.99 Hz) in DMN. iCoh; imaginary coherence, DMN; default mode network.
jkna-38-4-260f5.tif
Tableย 1.
Demographic and baseline characteristics
Characteristic Total (n=183) Good (n=53) Poor (n=130) p-value
Age (years) 54.30ยฑ15.27 50.25ยฑ14.52 55.95ยฑ15.33 0.022c
Male 123 (67.2) 36 (67.9) 87 (66.9) 0.896
Bystander CPR 121 (66.5) 39 (73.6) 82 (63.1) 0.193
No flow timea (minutes) 4.13ยฑ6.94 4.14ยฑ7.22 4.13ยฑ6.84 0.992
Low flow timeb (minutes) 24.28ยฑ21.32 16.68ยฑ12.85 27.45ยฑ23.31 <0.001d
Defibrillation, yes 89 (48.6) 37 (69.8) 52 (40.0) <0.001d
Shockable rhythm 66 (36.1) 28 (52.8) 38 (29.2) 0.003d
GCS 4.23ยฑ2.49 5.66ยฑ2.99 3.65ยฑ1.99 <0.001d
Pupil light reflex 89 (53.3) 41 (85.4) 48 (36.9) <0.001d
Pupil size (mm) 4.37ยฑ2.13 3.62ยฑ1.39 4.67ยฑ2.29 <0.001d
Seizure, yes 59 (32.2) 8 (15.1) 51 (39.2) 0.002c
NSE 163.60ยฑ298.22 66.68ยฑ213.03 203.11ยฑ318.98 <0.001d
CAG 97 (52.3) 38 (71.7) 59 (45.4) <0.001d
EEG acquisition time (hours) 36.97ยฑ17.80 38.67ยฑ16.88 35.19ยฑ18.26 0.152

Values are presented as meanยฑstandard deviation or number (%).

CPR; cardiopulmonary resuscitation, GCS; Glasgow coma scale, NSE; neuron-specific enolase, CAG; coronary arteriography.

a Cardiac arrest time without CPR;

b Cardiac arrest time with CPR;

c p-value <0.05;

d p-value <0.001.

Tableย 2.
Visual grading
Characteristic Total (n=183) Good (n=53) Poor (n=130) p-value
Background suppression 125 (68.3) 27 (50.9) 98 (75.4) <0.001a
Periodic discharge 11 (6.0) 0 (0.0) 11 (8.5) 0.029b
Alpha/theta coma 22 (12.0) 15 (28.3) 7 (5.4) <0.001a
Burst suppression 14 (7.7) 0 (0.0) 14 (10.8) 0.013b
Epileptiform discharge 26 (14.2) 2 (3.8) 24 (18.5) 0.010b

Values are presented as number (%).

a p-value <0.001;

b p-value <0.05.

Tableย 3.
Absolute power (ฮผV2) of each frequency band in five brain areas
Good (n=53) Poor (n=130) p-value
Delta band (1-3.99 Hz)
โ€ƒFrontal 14.18ยฑ17.70 20.53ยฑ45.38 0.240
โ€ƒCentral 8.60ยฑ11.63 13.68ยฑ35.52 0.224
โ€ƒTemporal 11.69ยฑ14.84 15.81ยฑ34.27 0.318
โ€ƒParietal 11.31ยฑ13.53 16.24ยฑ39.52 0.290
โ€ƒOccipital 18.20ยฑ21.59 24.66ยฑ59.46 0.359
Theta band (4-7.99 Hz)
โ€ƒFrontal 9.32ยฑ11.58 10.51ยฑ23.27 0.676
โ€ƒCentral 6.33ยฑ6.83 7.11ยฑ16.47 0.695
โ€ƒTemporal 8.66ยฑ11.50 7.87ยฑ17.92 0.731
โ€ƒParietal 8.23ยฑ10.32 8.77ยฑ23.18 0.848
โ€ƒOccipital 12.78ยฑ17.48 11.80ยฑ28.96 0.789
Alpha 1 band (8-9.99 Hz)
โ€ƒFrontal 3.73ยฑ5.11 1.96ยฑ4.37 0.010a
โ€ƒCentral 2.42ยฑ3.21 1.39ยฑ3.93 0.055
โ€ƒTemporal 2.87ยฑ3.49 1.60ยฑ3.97 0.023a
โ€ƒParietal 2.72ยฑ3.54 1.55ยฑ4.44 0.051
โ€ƒOccipital 4.54ยฑ5.92 2.16ยฑ5.61 0.005a
Alpha 2 band (10-11.99 Hz)
โ€ƒFrontal 3.25ยฑ6.00 1.03ยฑ2.22 0.002a
โ€ƒCentral 2.28ยฑ3.87 0.81ยฑ2.42 0.003a
โ€ƒTemporal 2.31ยฑ3.66 0.90ยฑ2.19 0.003a
โ€ƒParietal 2.28ยฑ3.53 0.82ยฑ2.40 0.002a
โ€ƒOccipital 3.46ยฑ5.47 1.12ยฑ2.93 <0.001b
Beta 1 band (12-14.99Hz)
โ€ƒFrontal 2.41ยฑ4.76 0.82ยฑ1.79 0.006a
โ€ƒCentral 1.86ยฑ3.03 0.68ยฑ2.09 0.003a
โ€ƒTemporal 1.89ยฑ3.23 0.84ยฑ1.99 0.005a
โ€ƒParietal 1.82ยฑ2.74 0.63ยฑ1.74 <0.001b
โ€ƒOccipital 2.32ยฑ3.61 0.92ยฑ2.33 0.003a
Beta 2 band (15-19.99 Hz)
โ€ƒFrontal 1.58ยฑ1.80 0.75ยฑ1.67 <0.001b
โ€ƒCentral 1.28ยฑ1.42 0.58ยฑ1.54 0.002a
โ€ƒTemporal 1.34ยฑ1.38 0.83ยฑ1.93 0.048a
โ€ƒParietal 1.25ยฑ1.42 0.53ยฑ1.26 <0.001b
โ€ƒOccipital 1.51ยฑ1.50 0.80ยฑ1.88 0.005a
Beta 3 band (20-29.99 Hz)
โ€ƒFrontal 0.90ยฑ0.75 0.80ยฑ1.86 0.633
โ€ƒCentral 0.74ยฑ0.65 0.53ยฑ1.20 0.164
โ€ƒTemporal 0.90ยฑ0.94 0.92ยฑ2.23 0.946
โ€ƒParietal 0.72ยฑ0.63 0.46ยฑ0.93 0.032a
โ€ƒOccipital 1.03ยฑ1.03 0.81ยฑ1.85 0.339
Gamma (30-45 Hz)
โ€ƒFrontal 0.49ยฑ0.46 0.66ยฑ1.36 0.211
โ€ƒCentral 0.36ยฑ0.29 0.45ยฑ1.03 0.458
โ€ƒTemporal 0.55ยฑ0.71 0.83ยฑ2.01 0.245
โ€ƒParietal 0.36ยฑ0.27 0.36ยฑ0.80 0.972
โ€ƒOccipital 0.57ยฑ0.58 0.69ยฑ1.63 0.539

Values are presented as meanยฑstandard deviation.

a p-value <0.05;

b p-value <0.001.

Tableย 4.
Relative power of each frequency band in five brain areas
Good (n=53) Poor (n=130) p-value
Delta band (1-3.99 Hz)
โ€ƒFrontal 39.75ยฑ20.51 48.22ยฑ16.34 0.003a
โ€ƒCentral 37.12ยฑ18.86 46.25ยฑ15.86 <0.001b
โ€ƒTemporal 39.39ยฑ18.87 47.30ยฑ17.62 0.003a
โ€ƒParietal 39.81ยฑ19.11 49.68ยฑ16.72 <0.001b
โ€ƒOccipital 41.84ยฑ19.28 49.65ยฑ17.30 0.004a
Theta band (4-7.99 Hz)
โ€ƒFrontal 24.21ยฑ11.89 22.74ยฑ9.60 0.343
โ€ƒCentral 25.08ยฑ11.22 22.63ยฑ9.23 0.096
โ€ƒTemporal 25.44ยฑ11.69 21.95ยฑ9.00 0.019a
โ€ƒParietal 25.84ยฑ12.06 22.68ยฑ9.26 0.039a
โ€ƒOccipital 25.60ยฑ13.53 22.19ยฑ9.98 0.043a
Alpha 1 band (8-9.99 Hz)
โ€ƒFrontal 9.82ยฑ6.97 5.59ยฑ4.06 <0.001b
โ€ƒCentral 9.50ยฑ6.05 5.66ยฑ3.42 <0.001b
โ€ƒTemporal 9.43ยฑ6.28 5.56ยฑ3.75 <0.001b
โ€ƒParietal 9.39ยฑ6.12 5.24ยฑ3.71 <0.001b
โ€ƒOccipital 9.94ยฑ7.47 5.30ยฑ4.11 <0.001b
Alpha 2 band (10-11.99 Hz)
โ€ƒFrontal 8.29ยฑ6.80 3.74ยฑ2.63 <0.001b
โ€ƒCentral 8.36ยฑ6.37 3.85ยฑ2.25 <0.001b
โ€ƒTemporal 7.58ยฑ5.77 3.70ยฑ2.24 <0.001b
โ€ƒParietal 7.73ยฑ6.26 3.53ยฑ2.38 <0.001b
โ€ƒOccipital 7.60ยฑ6.20 3.47ยฑ2.57 <0.001b
Beta 1 band (12-14.99 Hz)
โ€ƒFrontal 6.68ยฑ5.41 3.52ยฑ2.03 <0.001b
โ€ƒCentral 7.43ยฑ5.18 3.91ยฑ2.20 <0.001b
โ€ƒTemporal 6.48ยฑ4.77 3.84ยฑ2.22 <0.001b
โ€ƒParietal 6.70ยฑ5.04 3.52ยฑ2.24 <0.001b
โ€ƒOccipital 5.66ยฑ4.48 3.44ยฑ2.11 <0.001b
Beta 2 band (15-19.99 Hz)
โ€ƒFrontal 5.39ยฑ4.17 4.11ยฑ2.90 0.002a
โ€ƒCentral 6.00ยฑ4.04 4.52ยฑ2.86 0.006a
โ€ƒTemporal 5.29ยฑ3.65 4.54ยฑ3.22 0.131
โ€ƒParietal 5.11ยฑ3.55 4.00ยฑ2.87 0.017a
โ€ƒOccipital 4.23ยฑ2.98 4.03ยฑ2.98 0.642
Beta 3 band (20-29.99 Hz)
โ€ƒFrontal 3.65ยฑ2.79 5.76ยฑ5.33 <0.001b
โ€ƒCentral 4.06ยฑ2.67 6.29ยฑ5.41 <0.001b
โ€ƒTemporal 3.89ยฑ2.84 6.31ยฑ5.82 <0.001b
โ€ƒParietal 3.41ยฑ2.31 5.44ยฑ5.08 <0.001b
โ€ƒOccipital 3.14ยฑ2.32 5.68ยฑ5.30 <0.001b
Gamma (30-45 Hz)
โ€ƒFrontal 2.22ยฑ2.09 6.32ยฑ7.11 <0.001b
โ€ƒCentral 2.44ยฑ2.24 6.89ยฑ7.61 <0.001b
โ€ƒTemporal 2.51ยฑ2.53 6.81ยฑ7.40 <0.001b
โ€ƒParietal 2.02ยฑ1.81 5.91ยฑ6.64 <0.001b
โ€ƒOccipital 2.00ยฑ2.15 6.25ยฑ7.12 <0.001b

Values are presented as meanยฑstandard deviation.

a p-value <0.05;

b p-value <0.001.

REFERENCES
REFERENCES

1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 2015;131:e29-e322.
[Article] [PubMed]
2. Kim YH, Lee JH, Hong CK, Cho KW, Yeo JH, Kang MJ, et al. Feasibility of optic nerve sheath diameter measured on initial brain computed tomography as an early neurologic outcome predictor after cardiac arrest. Acad Emerg Med 2014;21:1121-1128.
[Article] [PubMed]
3. Young GB. Clinical practice. Neurologic prognosis after cardiac arrest. N Engl J Med 2009;361:605-611.
[Article] [PubMed]
4. Golan E, Barrett K, Alali AS, Duggal A, Jichici D, Pinto R, et al. Predicting neurologic outcome after targeted temperature management for cardiac arrest: systematic review and meta-analysis. Crit Care Med 2014;42:1919-1930.
[Article] [PubMed]
5. Lodder SS, van Putten MJ. Quantification of the adult EEG background pattern. Clin Neurophysiol 2013;124:228-237.
[Article] [PubMed]
6. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002;346:549-556.
[Article] [PubMed]
7. Asgari S, Moshirvaziri H, Scalzo F, Ramezan-Arab N. Quantitative measures of EEG for prediction of outcome in cardiac arrest subjects treated with hypothermia: a literature review. J Clin Monit Comput 2018;32:977-992.
[Article] [PubMed]
8. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008;1124:1-38.
[Article] [PubMed]
9. McKiernan KA, D'Angelo BR, Kaufman JN, Binder JR. Interrupting the "stream of consciousness": an fMRI investigation. Neuroimage 2006;29:1185-1191.
[Article] [PubMed]
10. Norton L, Hutchison RM, Young GB, Lee DH, Sharpe MD, Mirsattari SM. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology 2012;78:175-181.
[Article] [PubMed]
11. Cauda F, Micon BM, Sacco K, Duca S, D'Agata F, Geminiani G, et al. Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 2009;80:429-431.
[Article] [PubMed]
12. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, Schnakers C, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010;133:161-171.
[Article] [PubMed]
13. Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 2009;30:2393-2400.
[Article] [PubMed] [PMC]
14. McLaren J, Holmes GL, Berg MT. Functional connectivity in term neonates with hypoxic-ischemic encephalopathy undergoing therapeutic hypothermia. Pediatr Neurol 2019;74-79.
[Article]
15. Beudel M, Tjepkema-Cloostermans MC, Boersma JH, van Putten MJAM. Small-world characteristics of EEG patterns in post-anoxic encephalopathy. Front Neurol 2014;5:97.

16. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet 1975;1:480-484.
[Article] [PubMed]
17. Delorme A, Palmer J, Onton J, Oostenveld R, Makeig S. Independent EEG sources are dipolar. PLoS One 2012;7:e30135.
[Article] [PubMed] [PMC]
18. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004;134:9-21.
[Article] [PubMed]
19. Desikan RS, Sรฉgonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968-980.
[Article] [PubMed]
20. Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC. Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 1998;22:324-333.
[Article] [PubMed]
21. Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 2002;24 Suppl D:5-12.
[PubMed]
22. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 2004;115:2292-2307.
[Article] [PubMed]
23. Fugate JE, Wijdicks EF, Mandrekar J, Claassen DO, Manno EM, White RD, et al. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol 2010;68:907-914.
[Article] [PubMed]
24. Sivaraju A, Gilmore EJ, Wira CR, Stevens A, Rampal N, Moeller JJ, et al. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med 2015;41:1264-1272.
[Article] [PubMed]
25. Hofmeijer J, Beernink TM, Bosch FH, Beishuizen A, Tjepkema-Cloostermans MC, van Putten MJ. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology 2015;85:137-143.
[Article] [PubMed] [PMC]
26. Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S; Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006;67:203-210.
[Article] [PubMed]
27. Sandroni C, Cariou A, Cavallaro F, Cronberg T, Friberg H, Hoedemaekers C, et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation 2014;85:1779-1789.
[Article] [PubMed]
28. Taccone FS, Baar I, De Deyne C, Druwe P, Legros B, Meyfroidt G, et al. Neuroprognostication after adult cardiac arrest treated with targeted temperature management: task force for Belgian recommendations. Acta Neurol Belg 2017;117:3-15.
[Article] [PubMed]
29. Sondag L, Ruijter BJ, Tjepkema-Cloostermans MC, Beishuizen A, Bosch FH, van Til JA, et al. Early EEG for outcome prediction of postanoxic coma: prospective cohort study with cost-minimization analysis. Crit Care 2017;21:111.
[Article] [PubMed] [PMC]
30. Rothstein TL, Thomas EM, Sumi SM. Predicting outcome in hypoxic-ischemic coma. A prospective clinical and electrophysiologic study. Electroencephalogr Clin Neurophysiol 1991;79:101-107.
[Article]
31. Borjigin J, Lee U, Liu T, Pal D, Huff S, Klarr D, et al. Surge of neurophysiological coherence and connectivity in the dying brain. Proc Natl Acad Sci U S A 2013;110:14432-14437.
[Article] [PubMed] [PMC]
32. Knyazev GG, Slobodskoj-Plusnin JY, Bocharov AV, Pylkova LV. The default mode network and EEG ฮฑ oscillations: an independent component analysis. Brain Res 2011;1402:67-79.
[Article] [PubMed]

Go to Top